Metamath Proof Explorer


Theorem canthwe

Description: The set of well-orders of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(b) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypothesis canthwe.1 O = x r | x A r x × x r We x
Assertion canthwe A V A O

Proof

Step Hyp Ref Expression
1 canthwe.1 O = x r | x A r x × x r We x
2 simp1 x A r x × x r We x x A
3 velpw x 𝒫 A x A
4 2 3 sylibr x A r x × x r We x x 𝒫 A
5 simp2 x A r x × x r We x r x × x
6 xpss12 x A x A x × x A × A
7 2 2 6 syl2anc x A r x × x r We x x × x A × A
8 5 7 sstrd x A r x × x r We x r A × A
9 velpw r 𝒫 A × A r A × A
10 8 9 sylibr x A r x × x r We x r 𝒫 A × A
11 4 10 jca x A r x × x r We x x 𝒫 A r 𝒫 A × A
12 11 ssopab2i x r | x A r x × x r We x x r | x 𝒫 A r 𝒫 A × A
13 df-xp 𝒫 A × 𝒫 A × A = x r | x 𝒫 A r 𝒫 A × A
14 12 1 13 3sstr4i O 𝒫 A × 𝒫 A × A
15 pwexg A V 𝒫 A V
16 sqxpexg A V A × A V
17 16 pwexd A V 𝒫 A × A V
18 15 17 xpexd A V 𝒫 A × 𝒫 A × A V
19 ssexg O 𝒫 A × 𝒫 A × A 𝒫 A × 𝒫 A × A V O V
20 14 18 19 sylancr A V O V
21 simpr A V u A u A
22 21 snssd A V u A u A
23 0ss u × u
24 23 a1i A V u A u × u
25 rel0 Rel
26 br0 ¬ u u
27 wesn Rel We u ¬ u u
28 26 27 mpbiri Rel We u
29 25 28 mp1i A V u A We u
30 snex u V
31 0ex V
32 simpl x = u r = x = u
33 32 sseq1d x = u r = x A u A
34 simpr x = u r = r =
35 32 sqxpeqd x = u r = x × x = u × u
36 34 35 sseq12d x = u r = r x × x u × u
37 weeq2 x = u r We x r We u
38 weeq1 r = r We u We u
39 37 38 sylan9bb x = u r = r We x We u
40 33 36 39 3anbi123d x = u r = x A r x × x r We x u A u × u We u
41 30 31 40 opelopaba u x r | x A r x × x r We x u A u × u We u
42 22 24 29 41 syl3anbrc A V u A u x r | x A r x × x r We x
43 42 1 eleqtrrdi A V u A u O
44 43 ex A V u A u O
45 eqid =
46 snex v V
47 46 31 opth2 u = v u = v =
48 45 47 mpbiran2 u = v u = v
49 sneqbg u V u = v u = v
50 49 elv u = v u = v
51 48 50 bitri u = v u = v
52 51 2a1i A V u A v A u = v u = v
53 44 52 dom2d A V O V A O
54 20 53 mpd A V A O
55 eqid a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z = a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z
56 55 fpwwe2cbv a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z = x r | x A r x × x r We x y x [˙ r -1 y / w]˙ w f r w × w = y
57 eqid dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z = dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z
58 eqid a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z -1 dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z f a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z = a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z -1 dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z f a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z dom a s | a A s a × a s We a z a [˙ s -1 z / v]˙ v f s v × v = z
59 1 56 57 58 canthwelem A V ¬ f : O 1-1 A
60 f1of1 f : O 1-1 onto A f : O 1-1 A
61 59 60 nsyl A V ¬ f : O 1-1 onto A
62 61 nexdv A V ¬ f f : O 1-1 onto A
63 ensym A O O A
64 bren O A f f : O 1-1 onto A
65 63 64 sylib A O f f : O 1-1 onto A
66 62 65 nsyl A V ¬ A O
67 brsdom A O A O ¬ A O
68 54 66 67 sylanbrc A V A O