| Step |
Hyp |
Ref |
Expression |
| 1 |
|
canthwe.1 |
|
| 2 |
|
simp1 |
|
| 3 |
|
velpw |
|
| 4 |
2 3
|
sylibr |
|
| 5 |
|
simp2 |
|
| 6 |
|
xpss12 |
|
| 7 |
2 2 6
|
syl2anc |
|
| 8 |
5 7
|
sstrd |
|
| 9 |
|
velpw |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
4 10
|
jca |
|
| 12 |
11
|
ssopab2i |
|
| 13 |
|
df-xp |
|
| 14 |
12 1 13
|
3sstr4i |
|
| 15 |
|
pwexg |
|
| 16 |
|
sqxpexg |
|
| 17 |
16
|
pwexd |
|
| 18 |
15 17
|
xpexd |
|
| 19 |
|
ssexg |
|
| 20 |
14 18 19
|
sylancr |
|
| 21 |
|
simpr |
|
| 22 |
21
|
snssd |
|
| 23 |
|
0ss |
|
| 24 |
23
|
a1i |
|
| 25 |
|
rel0 |
|
| 26 |
|
br0 |
|
| 27 |
|
wesn |
|
| 28 |
26 27
|
mpbiri |
|
| 29 |
25 28
|
mp1i |
|
| 30 |
|
vsnex |
|
| 31 |
|
0ex |
|
| 32 |
|
simpl |
|
| 33 |
32
|
sseq1d |
|
| 34 |
|
simpr |
|
| 35 |
32
|
sqxpeqd |
|
| 36 |
34 35
|
sseq12d |
|
| 37 |
34 32
|
weeq12d |
|
| 38 |
33 36 37
|
3anbi123d |
|
| 39 |
30 31 38
|
opelopaba |
|
| 40 |
22 24 29 39
|
syl3anbrc |
|
| 41 |
40 1
|
eleqtrrdi |
|
| 42 |
41
|
ex |
|
| 43 |
|
eqid |
|
| 44 |
|
vsnex |
|
| 45 |
44 31
|
opth2 |
|
| 46 |
43 45
|
mpbiran2 |
|
| 47 |
|
sneqbg |
|
| 48 |
47
|
elv |
|
| 49 |
46 48
|
bitri |
|
| 50 |
49
|
2a1i |
|
| 51 |
42 50
|
dom2d |
|
| 52 |
20 51
|
mpd |
|
| 53 |
|
eqid |
|
| 54 |
53
|
fpwwe2cbv |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
1 54 55 56
|
canthwelem |
|
| 58 |
|
f1of1 |
|
| 59 |
57 58
|
nsyl |
|
| 60 |
59
|
nexdv |
|
| 61 |
|
ensym |
|
| 62 |
|
bren |
|
| 63 |
61 62
|
sylib |
|
| 64 |
60 63
|
nsyl |
|
| 65 |
|
brsdom |
|
| 66 |
52 64 65
|
sylanbrc |
|