Metamath Proof Explorer


Theorem canthwelem

Description: Lemma for canthwe . (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses canthwe.1 O = x r | x A r x × x r We x
canthwe.2 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
canthwe.3 B = dom W
canthwe.4 C = W B -1 B F W B
Assertion canthwelem A V ¬ F : O 1-1 A

Proof

Step Hyp Ref Expression
1 canthwe.1 O = x r | x A r x × x r We x
2 canthwe.2 W = x r | x A r x × x r We x y x [˙ r -1 y / u]˙ u F r u × u = y
3 canthwe.3 B = dom W
4 canthwe.4 C = W B -1 B F W B
5 eqid B = B
6 eqid W B = W B
7 5 6 pm3.2i B = B W B = W B
8 simpl A V F : O 1-1 A A V
9 df-ov x F r = F x r
10 f1f F : O 1-1 A F : O A
11 10 ad2antlr A V F : O 1-1 A x A r x × x r We x F : O A
12 simpr A V F : O 1-1 A x A r x × x r We x x A r x × x r We x
13 opabidw x r x r | x A r x × x r We x x A r x × x r We x
14 12 13 sylibr A V F : O 1-1 A x A r x × x r We x x r x r | x A r x × x r We x
15 14 1 eleqtrrdi A V F : O 1-1 A x A r x × x r We x x r O
16 11 15 ffvelcdmd A V F : O 1-1 A x A r x × x r We x F x r A
17 9 16 eqeltrid A V F : O 1-1 A x A r x × x r We x x F r A
18 2 8 17 3 fpwwe2 A V F : O 1-1 A B W W B B F W B B B = B W B = W B
19 7 18 mpbiri A V F : O 1-1 A B W W B B F W B B
20 19 simprd A V F : O 1-1 A B F W B B
21 4 4 xpeq12i C × C = W B -1 B F W B × W B -1 B F W B
22 21 ineq2i W B C × C = W B W B -1 B F W B × W B -1 B F W B
23 4 22 oveq12i C F W B C × C = W B -1 B F W B F W B W B -1 B F W B × W B -1 B F W B
24 19 simpld A V F : O 1-1 A B W W B
25 2 8 24 fpwwe2lem3 A V F : O 1-1 A B F W B B W B -1 B F W B F W B W B -1 B F W B × W B -1 B F W B = B F W B
26 20 25 mpdan A V F : O 1-1 A W B -1 B F W B F W B W B -1 B F W B × W B -1 B F W B = B F W B
27 23 26 eqtrid A V F : O 1-1 A C F W B C × C = B F W B
28 df-ov C F W B C × C = F C W B C × C
29 df-ov B F W B = F B W B
30 27 28 29 3eqtr3g A V F : O 1-1 A F C W B C × C = F B W B
31 simpr A V F : O 1-1 A F : O 1-1 A
32 cnvimass W B -1 B F W B dom W B
33 2 8 fpwwe2lem2 A V F : O 1-1 A B W W B B A W B B × B W B We B y B [˙ W B -1 y / u]˙ u F W B u × u = y
34 24 33 mpbid A V F : O 1-1 A B A W B B × B W B We B y B [˙ W B -1 y / u]˙ u F W B u × u = y
35 34 simpld A V F : O 1-1 A B A W B B × B
36 35 simprd A V F : O 1-1 A W B B × B
37 dmss W B B × B dom W B dom B × B
38 36 37 syl A V F : O 1-1 A dom W B dom B × B
39 dmxpss dom B × B B
40 38 39 sstrdi A V F : O 1-1 A dom W B B
41 32 40 sstrid A V F : O 1-1 A W B -1 B F W B B
42 4 41 eqsstrid A V F : O 1-1 A C B
43 35 simpld A V F : O 1-1 A B A
44 42 43 sstrd A V F : O 1-1 A C A
45 inss2 W B C × C C × C
46 45 a1i A V F : O 1-1 A W B C × C C × C
47 34 simprd A V F : O 1-1 A W B We B y B [˙ W B -1 y / u]˙ u F W B u × u = y
48 47 simpld A V F : O 1-1 A W B We B
49 wess C B W B We B W B We C
50 42 48 49 sylc A V F : O 1-1 A W B We C
51 weinxp W B We C W B C × C We C
52 50 51 sylib A V F : O 1-1 A W B C × C We C
53 fvex W B V
54 53 cnvex W B -1 V
55 54 imaex W B -1 B F W B V
56 4 55 eqeltri C V
57 53 inex1 W B C × C V
58 simpl x = C r = W B C × C x = C
59 58 sseq1d x = C r = W B C × C x A C A
60 simpr x = C r = W B C × C r = W B C × C
61 58 sqxpeqd x = C r = W B C × C x × x = C × C
62 60 61 sseq12d x = C r = W B C × C r x × x W B C × C C × C
63 60 58 weeq12d x = C r = W B C × C r We x W B C × C We C
64 59 62 63 3anbi123d x = C r = W B C × C x A r x × x r We x C A W B C × C C × C W B C × C We C
65 56 57 64 opelopaba C W B C × C x r | x A r x × x r We x C A W B C × C C × C W B C × C We C
66 44 46 52 65 syl3anbrc A V F : O 1-1 A C W B C × C x r | x A r x × x r We x
67 66 1 eleqtrrdi A V F : O 1-1 A C W B C × C O
68 8 43 ssexd A V F : O 1-1 A B V
69 53 a1i A V F : O 1-1 A W B V
70 simpl x = B r = W B x = B
71 70 sseq1d x = B r = W B x A B A
72 simpr x = B r = W B r = W B
73 70 sqxpeqd x = B r = W B x × x = B × B
74 72 73 sseq12d x = B r = W B r x × x W B B × B
75 72 70 weeq12d x = B r = W B r We x W B We B
76 71 74 75 3anbi123d x = B r = W B x A r x × x r We x B A W B B × B W B We B
77 76 opelopabga B V W B V B W B x r | x A r x × x r We x B A W B B × B W B We B
78 68 69 77 syl2anc A V F : O 1-1 A B W B x r | x A r x × x r We x B A W B B × B W B We B
79 43 36 48 78 mpbir3and A V F : O 1-1 A B W B x r | x A r x × x r We x
80 79 1 eleqtrrdi A V F : O 1-1 A B W B O
81 f1fveq F : O 1-1 A C W B C × C O B W B O F C W B C × C = F B W B C W B C × C = B W B
82 31 67 80 81 syl12anc A V F : O 1-1 A F C W B C × C = F B W B C W B C × C = B W B
83 30 82 mpbid A V F : O 1-1 A C W B C × C = B W B
84 56 57 opth1 C W B C × C = B W B C = B
85 83 84 syl A V F : O 1-1 A C = B
86 20 85 eleqtrrd A V F : O 1-1 A B F W B C
87 86 4 eleqtrdi A V F : O 1-1 A B F W B W B -1 B F W B
88 ovex B F W B V
89 88 eliniseg B F W B B B F W B W B -1 B F W B B F W B W B B F W B
90 20 89 syl A V F : O 1-1 A B F W B W B -1 B F W B B F W B W B B F W B
91 87 90 mpbid A V F : O 1-1 A B F W B W B B F W B
92 weso W B We B W B Or B
93 48 92 syl A V F : O 1-1 A W B Or B
94 sonr W B Or B B F W B B ¬ B F W B W B B F W B
95 93 20 94 syl2anc A V F : O 1-1 A ¬ B F W B W B B F W B
96 91 95 pm2.65da A V ¬ F : O 1-1 A