Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
oemapval.t |
|
5 |
1 2 3 4
|
oemapso |
|
6 |
|
oecl |
|
7 |
2 3 6
|
syl2anc |
|
8 |
|
eloni |
|
9 |
7 8
|
syl |
|
10 |
|
ordwe |
|
11 |
|
weso |
|
12 |
|
sopo |
|
13 |
9 10 11 12
|
4syl |
|
14 |
1 2 3
|
cantnff |
|
15 |
14
|
frnd |
|
16 |
|
onss |
|
17 |
7 16
|
syl |
|
18 |
17
|
sseld |
|
19 |
|
eleq1w |
|
20 |
|
eleq1w |
|
21 |
19 20
|
imbi12d |
|
22 |
21
|
imbi2d |
|
23 |
|
r19.21v |
|
24 |
|
ordelss |
|
25 |
9 24
|
sylan |
|
26 |
25
|
sselda |
|
27 |
|
pm5.5 |
|
28 |
26 27
|
syl |
|
29 |
28
|
ralbidva |
|
30 |
|
dfss3 |
|
31 |
29 30
|
bitr4di |
|
32 |
|
eleq1 |
|
33 |
2
|
adantr |
|
34 |
33
|
adantr |
|
35 |
3
|
adantr |
|
36 |
35
|
adantr |
|
37 |
|
simplrl |
|
38 |
|
simplrr |
|
39 |
7
|
adantr |
|
40 |
|
simprl |
|
41 |
|
onelon |
|
42 |
39 40 41
|
syl2anc |
|
43 |
|
on0eln0 |
|
44 |
42 43
|
syl |
|
45 |
44
|
biimpar |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
1 34 36 4 37 38 45 46 47 48 49
|
cantnflem4 |
|
51 |
|
fczsupp0 |
|
52 |
51
|
eqcomi |
|
53 |
|
oieq2 |
|
54 |
52 53
|
ax-mp |
|
55 |
|
ne0i |
|
56 |
55
|
ad2antrl |
|
57 |
|
oveq1 |
|
58 |
57
|
neeq1d |
|
59 |
56 58
|
syl5ibcom |
|
60 |
59
|
necon2d |
|
61 |
|
on0eln0 |
|
62 |
|
oe0m1 |
|
63 |
61 62
|
bitr3d |
|
64 |
35 63
|
syl |
|
65 |
|
on0eln0 |
|
66 |
33 65
|
syl |
|
67 |
60 64 66
|
3imtr4d |
|
68 |
|
ne0i |
|
69 |
67 68
|
impel |
|
70 |
|
fconstmpt |
|
71 |
69 70
|
fmptd |
|
72 |
|
0ex |
|
73 |
72
|
a1i |
|
74 |
3 73
|
fczfsuppd |
|
75 |
74
|
adantr |
|
76 |
1 2 3
|
cantnfs |
|
77 |
76
|
adantr |
|
78 |
71 75 77
|
mpbir2and |
|
79 |
|
eqid |
|
80 |
1 33 35 54 78 79
|
cantnfval |
|
81 |
|
we0 |
|
82 |
|
eqid |
|
83 |
82
|
oien |
|
84 |
72 81 83
|
mp2an |
|
85 |
|
en0 |
|
86 |
84 85
|
mpbi |
|
87 |
86
|
fveq2i |
|
88 |
79
|
seqom0g |
|
89 |
72 88
|
ax-mp |
|
90 |
87 89
|
eqtri |
|
91 |
80 90
|
eqtrdi |
|
92 |
14
|
adantr |
|
93 |
92
|
ffnd |
|
94 |
|
fnfvelrn |
|
95 |
93 78 94
|
syl2anc |
|
96 |
91 95
|
eqeltrrd |
|
97 |
32 50 96
|
pm2.61ne |
|
98 |
97
|
expr |
|
99 |
31 98
|
sylbid |
|
100 |
99
|
ex |
|
101 |
100
|
com23 |
|
102 |
101
|
a2i |
|
103 |
102
|
a1i |
|
104 |
23 103
|
syl5bi |
|
105 |
22 104
|
tfis2 |
|
106 |
105
|
com3l |
|
107 |
18 106
|
mpdd |
|
108 |
107
|
ssrdv |
|
109 |
15 108
|
eqssd |
|
110 |
|
dffo2 |
|
111 |
14 109 110
|
sylanbrc |
|
112 |
2
|
adantr |
|
113 |
3
|
adantr |
|
114 |
|
fveq2 |
|
115 |
|
fveq2 |
|
116 |
114 115
|
eleq12d |
|
117 |
|
eleq1w |
|
118 |
117
|
imbi1d |
|
119 |
118
|
ralbidv |
|
120 |
116 119
|
anbi12d |
|
121 |
120
|
cbvrexvw |
|
122 |
|
fveq1 |
|
123 |
|
fveq1 |
|
124 |
|
eleq12 |
|
125 |
122 123 124
|
syl2an |
|
126 |
|
fveq1 |
|
127 |
|
fveq1 |
|
128 |
126 127
|
eqeqan12d |
|
129 |
128
|
imbi2d |
|
130 |
129
|
ralbidv |
|
131 |
125 130
|
anbi12d |
|
132 |
131
|
rexbidv |
|
133 |
121 132
|
syl5bb |
|
134 |
133
|
cbvopabv |
|
135 |
4 134
|
eqtri |
|
136 |
|
simprll |
|
137 |
|
simprlr |
|
138 |
|
simprr |
|
139 |
|
eqid |
|
140 |
|
eqid |
|
141 |
|
eqid |
|
142 |
1 112 113 135 136 137 138 139 140 141
|
cantnflem1 |
|
143 |
|
fvex |
|
144 |
143
|
epeli |
|
145 |
142 144
|
sylibr |
|
146 |
145
|
expr |
|
147 |
146
|
ralrimivva |
|
148 |
|
soisoi |
|
149 |
5 13 111 147 148
|
syl22anc |
|