| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | oemapval.t |  | 
						
							| 5 | 1 2 3 4 | oemapso |  | 
						
							| 6 |  | oecl |  | 
						
							| 7 | 2 3 6 | syl2anc |  | 
						
							| 8 |  | eloni |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | ordwe |  | 
						
							| 11 |  | weso |  | 
						
							| 12 |  | sopo |  | 
						
							| 13 | 9 10 11 12 | 4syl |  | 
						
							| 14 | 1 2 3 | cantnff |  | 
						
							| 15 | 14 | frnd |  | 
						
							| 16 |  | onss |  | 
						
							| 17 | 7 16 | syl |  | 
						
							| 18 | 17 | sseld |  | 
						
							| 19 |  | eleq1w |  | 
						
							| 20 |  | eleq1w |  | 
						
							| 21 | 19 20 | imbi12d |  | 
						
							| 22 | 21 | imbi2d |  | 
						
							| 23 |  | r19.21v |  | 
						
							| 24 |  | ordelss |  | 
						
							| 25 | 9 24 | sylan |  | 
						
							| 26 | 25 | sselda |  | 
						
							| 27 |  | pm5.5 |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | ralbidva |  | 
						
							| 30 |  | dfss3 |  | 
						
							| 31 | 29 30 | bitr4di |  | 
						
							| 32 |  | eleq1 |  | 
						
							| 33 | 2 | adantr |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 3 | adantr |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | simplrl |  | 
						
							| 38 |  | simplrr |  | 
						
							| 39 | 7 | adantr |  | 
						
							| 40 |  | simprl |  | 
						
							| 41 |  | onelon |  | 
						
							| 42 | 39 40 41 | syl2anc |  | 
						
							| 43 |  | on0eln0 |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 44 | biimpar |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 1 34 36 4 37 38 45 46 47 48 49 | cantnflem4 |  | 
						
							| 51 |  | fczsupp0 |  | 
						
							| 52 | 51 | eqcomi |  | 
						
							| 53 |  | oieq2 |  | 
						
							| 54 | 52 53 | ax-mp |  | 
						
							| 55 |  | ne0i |  | 
						
							| 56 | 55 | ad2antrl |  | 
						
							| 57 |  | oveq1 |  | 
						
							| 58 | 57 | neeq1d |  | 
						
							| 59 | 56 58 | syl5ibcom |  | 
						
							| 60 | 59 | necon2d |  | 
						
							| 61 |  | on0eln0 |  | 
						
							| 62 |  | oe0m1 |  | 
						
							| 63 | 61 62 | bitr3d |  | 
						
							| 64 | 35 63 | syl |  | 
						
							| 65 |  | on0eln0 |  | 
						
							| 66 | 33 65 | syl |  | 
						
							| 67 | 60 64 66 | 3imtr4d |  | 
						
							| 68 |  | ne0i |  | 
						
							| 69 | 67 68 | impel |  | 
						
							| 70 |  | fconstmpt |  | 
						
							| 71 | 69 70 | fmptd |  | 
						
							| 72 |  | 0ex |  | 
						
							| 73 | 72 | a1i |  | 
						
							| 74 | 3 73 | fczfsuppd |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 1 2 3 | cantnfs |  | 
						
							| 77 | 76 | adantr |  | 
						
							| 78 | 71 75 77 | mpbir2and |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 | 1 33 35 54 78 79 | cantnfval |  | 
						
							| 81 |  | we0 |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 | 82 | oien |  | 
						
							| 84 | 72 81 83 | mp2an |  | 
						
							| 85 |  | en0 |  | 
						
							| 86 | 84 85 | mpbi |  | 
						
							| 87 | 86 | fveq2i |  | 
						
							| 88 | 79 | seqom0g |  | 
						
							| 89 | 72 88 | ax-mp |  | 
						
							| 90 | 87 89 | eqtri |  | 
						
							| 91 | 80 90 | eqtrdi |  | 
						
							| 92 | 14 | adantr |  | 
						
							| 93 | 92 | ffnd |  | 
						
							| 94 |  | fnfvelrn |  | 
						
							| 95 | 93 78 94 | syl2anc |  | 
						
							| 96 | 91 95 | eqeltrrd |  | 
						
							| 97 | 32 50 96 | pm2.61ne |  | 
						
							| 98 | 97 | expr |  | 
						
							| 99 | 31 98 | sylbid |  | 
						
							| 100 | 99 | ex |  | 
						
							| 101 | 100 | com23 |  | 
						
							| 102 | 101 | a2i |  | 
						
							| 103 | 102 | a1i |  | 
						
							| 104 | 23 103 | biimtrid |  | 
						
							| 105 | 22 104 | tfis2 |  | 
						
							| 106 | 105 | com3l |  | 
						
							| 107 | 18 106 | mpdd |  | 
						
							| 108 | 107 | ssrdv |  | 
						
							| 109 | 15 108 | eqssd |  | 
						
							| 110 |  | dffo2 |  | 
						
							| 111 | 14 109 110 | sylanbrc |  | 
						
							| 112 | 2 | adantr |  | 
						
							| 113 | 3 | adantr |  | 
						
							| 114 |  | fveq2 |  | 
						
							| 115 |  | fveq2 |  | 
						
							| 116 | 114 115 | eleq12d |  | 
						
							| 117 |  | eleq1w |  | 
						
							| 118 | 117 | imbi1d |  | 
						
							| 119 | 118 | ralbidv |  | 
						
							| 120 | 116 119 | anbi12d |  | 
						
							| 121 | 120 | cbvrexvw |  | 
						
							| 122 |  | fveq1 |  | 
						
							| 123 |  | fveq1 |  | 
						
							| 124 |  | eleq12 |  | 
						
							| 125 | 122 123 124 | syl2an |  | 
						
							| 126 |  | fveq1 |  | 
						
							| 127 |  | fveq1 |  | 
						
							| 128 | 126 127 | eqeqan12d |  | 
						
							| 129 | 128 | imbi2d |  | 
						
							| 130 | 129 | ralbidv |  | 
						
							| 131 | 125 130 | anbi12d |  | 
						
							| 132 | 131 | rexbidv |  | 
						
							| 133 | 121 132 | bitrid |  | 
						
							| 134 | 133 | cbvopabv |  | 
						
							| 135 | 4 134 | eqtri |  | 
						
							| 136 |  | simprll |  | 
						
							| 137 |  | simprlr |  | 
						
							| 138 |  | simprr |  | 
						
							| 139 |  | eqid |  | 
						
							| 140 |  | eqid |  | 
						
							| 141 |  | eqid |  | 
						
							| 142 | 1 112 113 135 136 137 138 139 140 141 | cantnflem1 |  | 
						
							| 143 |  | fvex |  | 
						
							| 144 | 143 | epeli |  | 
						
							| 145 | 142 144 | sylibr |  | 
						
							| 146 | 145 | expr |  | 
						
							| 147 | 146 | ralrimivva |  | 
						
							| 148 |  | soisoi |  | 
						
							| 149 | 5 13 111 147 148 | syl22anc |  |