| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
cantnfcl.g |
|
| 5 |
|
cantnfcl.f |
|
| 6 |
|
suppssdm |
|
| 7 |
1 2 3
|
cantnfs |
|
| 8 |
5 7
|
mpbid |
|
| 9 |
8
|
simpld |
|
| 10 |
6 9
|
fssdm |
|
| 11 |
|
onss |
|
| 12 |
3 11
|
syl |
|
| 13 |
10 12
|
sstrd |
|
| 14 |
|
epweon |
|
| 15 |
|
wess |
|
| 16 |
13 14 15
|
mpisyl |
|
| 17 |
|
ovexd |
|
| 18 |
4
|
oion |
|
| 19 |
17 18
|
syl |
|
| 20 |
8
|
simprd |
|
| 21 |
20
|
fsuppimpd |
|
| 22 |
4
|
oien |
|
| 23 |
17 16 22
|
syl2anc |
|
| 24 |
|
enfii |
|
| 25 |
21 23 24
|
syl2anc |
|
| 26 |
19 25
|
elind |
|
| 27 |
|
onfin2 |
|
| 28 |
26 27
|
eleqtrrdi |
|
| 29 |
16 28
|
jca |
|