Metamath Proof Explorer


Theorem cantnfcl

Description: Basic properties of the order isomorphism G used later. The support of an F e. S is a finite subset of A , so it is well-ordered by _E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfcl.g G = OrdIso E F supp
cantnfcl.f φ F S
Assertion cantnfcl φ E We supp F dom G ω

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfcl.g G = OrdIso E F supp
5 cantnfcl.f φ F S
6 suppssdm F supp dom F
7 1 2 3 cantnfs φ F S F : B A finSupp F
8 5 7 mpbid φ F : B A finSupp F
9 8 simpld φ F : B A
10 6 9 fssdm φ F supp B
11 onss B On B On
12 3 11 syl φ B On
13 10 12 sstrd φ F supp On
14 epweon E We On
15 wess F supp On E We On E We supp F
16 13 14 15 mpisyl φ E We supp F
17 ovexd φ F supp V
18 4 oion F supp V dom G On
19 17 18 syl φ dom G On
20 8 simprd φ finSupp F
21 20 fsuppimpd φ F supp Fin
22 4 oien F supp V E We supp F dom G supp F
23 17 16 22 syl2anc φ dom G supp F
24 enfii F supp Fin dom G supp F dom G Fin
25 21 23 24 syl2anc φ dom G Fin
26 19 25 elind φ dom G On Fin
27 onfin2 ω = On Fin
28 26 27 eleqtrrdi φ dom G ω
29 16 28 jca φ E We supp F dom G ω