Metamath Proof Explorer


Theorem cantnfdm

Description: The domain of the Cantor normal form function (in later lemmas we will use dom ( A CNF B ) to abbreviate "the set of finitely supported functions from B to A "). (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnffval.s S = g A B | finSupp g
cantnffval.a φ A On
cantnffval.b φ B On
Assertion cantnfdm φ dom A CNF B = S

Proof

Step Hyp Ref Expression
1 cantnffval.s S = g A B | finSupp g
2 cantnffval.a φ A On
3 cantnffval.b φ B On
4 1 2 3 cantnffval φ A CNF B = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
5 4 dmeqd φ dom A CNF B = dom f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
6 fvex seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
7 6 csbex OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
8 7 rgenw f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
9 dmmptg f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V dom f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = S
10 8 9 ax-mp dom f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = S
11 5 10 eqtrdi φ dom A CNF B = S