Metamath Proof Explorer


Theorem cantnff

Description: The CNF function is a function from finitely supported functions from B to A , to the ordinal exponential A ^o B . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
Assertion cantnff φ A CNF B : S A 𝑜 B

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 fvex seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
5 4 csbex OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
6 5 a1i φ f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
7 eqid g A B | finSupp g = g A B | finSupp g
8 7 2 3 cantnffval φ A CNF B = f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
9 7 2 3 cantnfdm φ dom A CNF B = g A B | finSupp g
10 1 9 syl5eq φ S = g A B | finSupp g
11 10 mpteq1d φ f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h = f g A B | finSupp g OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
12 8 11 eqtr4d φ A CNF B = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
13 2 adantr φ x S A On
14 3 adantr φ x S B On
15 eqid OrdIso E x supp = OrdIso E x supp
16 simpr φ x S x S
17 eqid seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z
18 1 13 14 15 16 17 cantnfval φ x S A CNF B x = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z dom OrdIso E x supp
19 18 adantr φ x S A = A CNF B x = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z dom OrdIso E x supp
20 ovex x supp V
21 1 13 14 15 16 cantnfcl φ x S E We supp x dom OrdIso E x supp ω
22 21 simpld φ x S E We supp x
23 15 oien x supp V E We supp x dom OrdIso E x supp supp x
24 20 22 23 sylancr φ x S dom OrdIso E x supp supp x
25 24 adantr φ x S A = dom OrdIso E x supp supp x
26 suppssdm x supp dom x
27 1 2 3 cantnfs φ x S x : B A finSupp x
28 27 simprbda φ x S x : B A
29 26 28 fssdm φ x S x supp B
30 feq3 A = x : B A x : B
31 28 30 syl5ibcom φ x S A = x : B
32 31 imp φ x S A = x : B
33 f00 x : B x = B =
34 32 33 sylib φ x S A = x = B =
35 34 simprd φ x S A = B =
36 sseq0 x supp B B = x supp =
37 29 35 36 syl2an2r φ x S A = x supp =
38 25 37 breqtrd φ x S A = dom OrdIso E x supp
39 en0 dom OrdIso E x supp dom OrdIso E x supp =
40 38 39 sylib φ x S A = dom OrdIso E x supp =
41 40 fveq2d φ x S A = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z dom OrdIso E x supp = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z
42 0ex V
43 17 seqom0g V seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z =
44 42 43 mp1i φ x S A = seq ω k V , z V A 𝑜 OrdIso E x supp k 𝑜 x OrdIso E x supp k + 𝑜 z =
45 19 41 44 3eqtrd φ x S A = A CNF B x =
46 el1o A CNF B x 1 𝑜 A CNF B x =
47 45 46 sylibr φ x S A = A CNF B x 1 𝑜
48 35 oveq2d φ x S A = A 𝑜 B = A 𝑜
49 13 adantr φ x S A = A On
50 oe0 A On A 𝑜 = 1 𝑜
51 49 50 syl φ x S A = A 𝑜 = 1 𝑜
52 48 51 eqtrd φ x S A = A 𝑜 B = 1 𝑜
53 47 52 eleqtrrd φ x S A = A CNF B x A 𝑜 B
54 13 adantr φ x S A A On
55 14 adantr φ x S A B On
56 16 adantr φ x S A x S
57 on0eln0 A On A A
58 13 57 syl φ x S A A
59 58 biimpar φ x S A A
60 29 adantr φ x S A x supp B
61 1 54 55 56 59 55 60 cantnflt2 φ x S A A CNF B x A 𝑜 B
62 53 61 pm2.61dane φ x S A CNF B x A 𝑜 B
63 6 12 62 fmpt2d φ A CNF B : S A 𝑜 B