| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | fvex |  | 
						
							| 5 | 4 | csbex |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 2 3 | cantnffval |  | 
						
							| 9 | 7 2 3 | cantnfdm |  | 
						
							| 10 | 1 9 | eqtrid |  | 
						
							| 11 | 10 | mpteq1d |  | 
						
							| 12 | 8 11 | eqtr4d |  | 
						
							| 13 | 2 | adantr |  | 
						
							| 14 | 3 | adantr |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 13 14 15 16 17 | cantnfval |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | ovex |  | 
						
							| 21 | 1 13 14 15 16 | cantnfcl |  | 
						
							| 22 | 21 | simpld |  | 
						
							| 23 | 15 | oien |  | 
						
							| 24 | 20 22 23 | sylancr |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 |  | suppssdm |  | 
						
							| 27 | 1 2 3 | cantnfs |  | 
						
							| 28 | 27 | simprbda |  | 
						
							| 29 | 26 28 | fssdm |  | 
						
							| 30 |  | feq3 |  | 
						
							| 31 | 28 30 | syl5ibcom |  | 
						
							| 32 | 31 | imp |  | 
						
							| 33 |  | f00 |  | 
						
							| 34 | 32 33 | sylib |  | 
						
							| 35 | 34 | simprd |  | 
						
							| 36 |  | sseq0 |  | 
						
							| 37 | 29 35 36 | syl2an2r |  | 
						
							| 38 | 25 37 | breqtrd |  | 
						
							| 39 |  | en0 |  | 
						
							| 40 | 38 39 | sylib |  | 
						
							| 41 | 40 | fveq2d |  | 
						
							| 42 |  | 0ex |  | 
						
							| 43 | 17 | seqom0g |  | 
						
							| 44 | 42 43 | mp1i |  | 
						
							| 45 | 19 41 44 | 3eqtrd |  | 
						
							| 46 |  | el1o |  | 
						
							| 47 | 45 46 | sylibr |  | 
						
							| 48 | 35 | oveq2d |  | 
						
							| 49 | 13 | adantr |  | 
						
							| 50 |  | oe0 |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 | 48 51 | eqtrd |  | 
						
							| 53 | 47 52 | eleqtrrd |  | 
						
							| 54 | 13 | adantr |  | 
						
							| 55 | 14 | adantr |  | 
						
							| 56 | 16 | adantr |  | 
						
							| 57 |  | on0eln0 |  | 
						
							| 58 | 13 57 | syl |  | 
						
							| 59 | 58 | biimpar |  | 
						
							| 60 | 29 | adantr |  | 
						
							| 61 | 1 54 55 56 59 55 60 | cantnflt2 |  | 
						
							| 62 | 53 61 | pm2.61dane |  | 
						
							| 63 | 6 12 62 | fmpt2d |  |