Metamath Proof Explorer


Theorem cantnff1o

Description: Simplify the isomorphism of cantnf to simple bijection. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Hypotheses cantnff1o.1 S = dom A CNF B
cantnff1o.2 φ A On
cantnff1o.3 φ B On
Assertion cantnff1o φ A CNF B : S 1-1 onto A 𝑜 B

Proof

Step Hyp Ref Expression
1 cantnff1o.1 S = dom A CNF B
2 cantnff1o.2 φ A On
3 cantnff1o.3 φ B On
4 eqid x y | z B x z y z w B z w x w = y w = x y | z B x z y z w B z w x w = y w
5 1 2 3 4 cantnf φ A CNF B Isom x y | z B x z y z w B z w x w = y w , E S A 𝑜 B
6 isof1o A CNF B Isom x y | z B x z y z w B z w x w = y w , E S A 𝑜 B A CNF B : S 1-1 onto A 𝑜 B
7 5 6 syl φ A CNF B : S 1-1 onto A 𝑜 B