Metamath Proof Explorer


Theorem cantnffval

Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnffval.s S = g A B | finSupp g
cantnffval.a φ A On
cantnffval.b φ B On
Assertion cantnffval φ A CNF B = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h

Proof

Step Hyp Ref Expression
1 cantnffval.s S = g A B | finSupp g
2 cantnffval.a φ A On
3 cantnffval.b φ B On
4 oveq12 x = A y = B x y = A B
5 4 rabeqdv x = A y = B g x y | finSupp g = g A B | finSupp g
6 5 1 eqtr4di x = A y = B g x y | finSupp g = S
7 simp1l x = A y = B k V z V x = A
8 7 oveq1d x = A y = B k V z V x 𝑜 h k = A 𝑜 h k
9 8 oveq1d x = A y = B k V z V x 𝑜 h k 𝑜 f h k = A 𝑜 h k 𝑜 f h k
10 9 oveq1d x = A y = B k V z V x 𝑜 h k 𝑜 f h k + 𝑜 z = A 𝑜 h k 𝑜 f h k + 𝑜 z
11 10 mpoeq3dva x = A y = B k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z = k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z
12 eqid =
13 seqomeq12 k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z = k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z = seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z = seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z
14 11 12 13 sylancl x = A y = B seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z = seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z
15 14 fveq1d x = A y = B seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z dom h = seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
16 15 csbeq2dv x = A y = B OrdIso E f supp / h seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z dom h = OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
17 6 16 mpteq12dv x = A y = B f g x y | finSupp g OrdIso E f supp / h seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z dom h = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
18 df-cnf CNF = x On , y On f g x y | finSupp g OrdIso E f supp / h seq ω k V , z V x 𝑜 h k 𝑜 f h k + 𝑜 z dom h
19 ovex A B V
20 1 19 rabex2 S V
21 20 mptex f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h V
22 17 18 21 ovmpoa A On B On A CNF B = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h
23 2 3 22 syl2anc φ A CNF B = f S OrdIso E f supp / h seq ω k V , z V A 𝑜 h k 𝑜 f h k + 𝑜 z dom h