Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
cantnfcl.g |
|
5 |
|
cantnfcl.f |
|
6 |
|
cantnfval.h |
|
7 |
|
cantnfle.c |
|
8 |
|
oveq2 |
|
9 |
8
|
sseq1d |
|
10 |
|
ovexd |
|
11 |
1 2 3 4 5
|
cantnfcl |
|
12 |
11
|
simpld |
|
13 |
4
|
oiiso |
|
14 |
10 12 13
|
syl2anc |
|
15 |
|
isof1o |
|
16 |
14 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
f1ocnv |
|
19 |
|
f1of |
|
20 |
17 18 19
|
3syl |
|
21 |
7
|
anim1i |
|
22 |
1 2 3
|
cantnfs |
|
23 |
5 22
|
mpbid |
|
24 |
23
|
simpld |
|
25 |
24
|
adantr |
|
26 |
25
|
ffnd |
|
27 |
3
|
adantr |
|
28 |
|
0ex |
|
29 |
28
|
a1i |
|
30 |
|
elsuppfn |
|
31 |
26 27 29 30
|
syl3anc |
|
32 |
21 31
|
mpbird |
|
33 |
20 32
|
ffvelrnd |
|
34 |
11
|
simprd |
|
35 |
34
|
adantr |
|
36 |
|
eqimss |
|
37 |
36
|
biantrurd |
|
38 |
|
eleq2 |
|
39 |
37 38
|
bitr3d |
|
40 |
|
fveq2 |
|
41 |
40
|
sseq2d |
|
42 |
39 41
|
imbi12d |
|
43 |
42
|
imbi2d |
|
44 |
|
sseq1 |
|
45 |
|
eleq2 |
|
46 |
44 45
|
anbi12d |
|
47 |
|
fveq2 |
|
48 |
47
|
sseq2d |
|
49 |
46 48
|
imbi12d |
|
50 |
|
sseq1 |
|
51 |
|
eleq2 |
|
52 |
50 51
|
anbi12d |
|
53 |
|
fveq2 |
|
54 |
53
|
sseq2d |
|
55 |
52 54
|
imbi12d |
|
56 |
|
sseq1 |
|
57 |
|
eleq2 |
|
58 |
56 57
|
anbi12d |
|
59 |
|
fveq2 |
|
60 |
59
|
sseq2d |
|
61 |
58 60
|
imbi12d |
|
62 |
|
noel |
|
63 |
62
|
pm2.21i |
|
64 |
63
|
adantl |
|
65 |
64
|
a1i |
|
66 |
|
fvex |
|
67 |
66
|
elsuc |
|
68 |
|
sssucid |
|
69 |
|
sstr |
|
70 |
68 69
|
mpan |
|
71 |
70
|
ad2antrl |
|
72 |
|
simprr |
|
73 |
|
pm2.27 |
|
74 |
71 72 73
|
syl2anc |
|
75 |
6
|
cantnfvalf |
|
76 |
75
|
ffvelrni |
|
77 |
76
|
ad2antlr |
|
78 |
2
|
ad3antrrr |
|
79 |
3
|
ad3antrrr |
|
80 |
|
suppssdm |
|
81 |
80 24
|
fssdm |
|
82 |
81
|
ad3antrrr |
|
83 |
|
simpr |
|
84 |
|
sucidg |
|
85 |
84
|
ad2antlr |
|
86 |
83 85
|
sseldd |
|
87 |
4
|
oif |
|
88 |
87
|
ffvelrni |
|
89 |
86 88
|
syl |
|
90 |
82 89
|
sseldd |
|
91 |
|
onelon |
|
92 |
79 90 91
|
syl2anc |
|
93 |
|
oecl |
|
94 |
78 92 93
|
syl2anc |
|
95 |
24
|
ad3antrrr |
|
96 |
95 90
|
ffvelrnd |
|
97 |
|
onelon |
|
98 |
78 96 97
|
syl2anc |
|
99 |
|
omcl |
|
100 |
94 98 99
|
syl2anc |
|
101 |
|
oaword2 |
|
102 |
77 100 101
|
syl2anc |
|
103 |
1 2 3 4 5 6
|
cantnfsuc |
|
104 |
103
|
ad4ant13 |
|
105 |
102 104
|
sseqtrrd |
|
106 |
|
sstr |
|
107 |
106
|
expcom |
|
108 |
105 107
|
syl |
|
109 |
108
|
adantrr |
|
110 |
74 109
|
syld |
|
111 |
110
|
expr |
|
112 |
|
simprr |
|
113 |
112
|
fveq2d |
|
114 |
|
f1ocnvfv2 |
|
115 |
17 32 114
|
syl2anc |
|
116 |
115
|
ad2antrr |
|
117 |
113 116
|
eqtr3d |
|
118 |
117
|
oveq2d |
|
119 |
117
|
fveq2d |
|
120 |
118 119
|
oveq12d |
|
121 |
|
oaword1 |
|
122 |
100 77 121
|
syl2anc |
|
123 |
122
|
adantrr |
|
124 |
120 123
|
eqsstrrd |
|
125 |
103
|
ad4ant13 |
|
126 |
124 125
|
sseqtrrd |
|
127 |
126
|
expr |
|
128 |
127
|
a1dd |
|
129 |
111 128
|
jaod |
|
130 |
67 129
|
syl5bi |
|
131 |
130
|
expimpd |
|
132 |
131
|
com23 |
|
133 |
132
|
expcom |
|
134 |
49 55 61 65 133
|
finds2 |
|
135 |
43 134
|
vtoclga |
|
136 |
35 135
|
mpcom |
|
137 |
33 136
|
mpd |
|
138 |
1 2 3 4 5 6
|
cantnfval |
|
139 |
138
|
adantr |
|
140 |
137 139
|
sseqtrrd |
|
141 |
|
onelon |
|
142 |
3 7 141
|
syl2anc |
|
143 |
|
oecl |
|
144 |
2 142 143
|
syl2anc |
|
145 |
|
om0 |
|
146 |
144 145
|
syl |
|
147 |
|
0ss |
|
148 |
146 147
|
eqsstrdi |
|
149 |
9 140 148
|
pm2.61ne |
|