| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | cantnfcl.g |  | 
						
							| 5 |  | cantnfcl.f |  | 
						
							| 6 |  | cantnfval.h |  | 
						
							| 7 |  | cantnfle.c |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 8 | sseq1d |  | 
						
							| 10 |  | ovexd |  | 
						
							| 11 | 1 2 3 4 5 | cantnfcl |  | 
						
							| 12 | 11 | simpld |  | 
						
							| 13 | 4 | oiiso |  | 
						
							| 14 | 10 12 13 | syl2anc |  | 
						
							| 15 |  | isof1o |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | f1ocnv |  | 
						
							| 19 |  | f1of |  | 
						
							| 20 | 17 18 19 | 3syl |  | 
						
							| 21 | 7 | anim1i |  | 
						
							| 22 | 1 2 3 | cantnfs |  | 
						
							| 23 | 5 22 | mpbid |  | 
						
							| 24 | 23 | simpld |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | ffnd |  | 
						
							| 27 | 3 | adantr |  | 
						
							| 28 |  | 0ex |  | 
						
							| 29 | 28 | a1i |  | 
						
							| 30 |  | elsuppfn |  | 
						
							| 31 | 26 27 29 30 | syl3anc |  | 
						
							| 32 | 21 31 | mpbird |  | 
						
							| 33 | 20 32 | ffvelcdmd |  | 
						
							| 34 | 11 | simprd |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 |  | eqimss |  | 
						
							| 37 | 36 | biantrurd |  | 
						
							| 38 |  | eleq2 |  | 
						
							| 39 | 37 38 | bitr3d |  | 
						
							| 40 |  | fveq2 |  | 
						
							| 41 | 40 | sseq2d |  | 
						
							| 42 | 39 41 | imbi12d |  | 
						
							| 43 | 42 | imbi2d |  | 
						
							| 44 |  | sseq1 |  | 
						
							| 45 |  | eleq2 |  | 
						
							| 46 | 44 45 | anbi12d |  | 
						
							| 47 |  | fveq2 |  | 
						
							| 48 | 47 | sseq2d |  | 
						
							| 49 | 46 48 | imbi12d |  | 
						
							| 50 |  | sseq1 |  | 
						
							| 51 |  | eleq2 |  | 
						
							| 52 | 50 51 | anbi12d |  | 
						
							| 53 |  | fveq2 |  | 
						
							| 54 | 53 | sseq2d |  | 
						
							| 55 | 52 54 | imbi12d |  | 
						
							| 56 |  | sseq1 |  | 
						
							| 57 |  | eleq2 |  | 
						
							| 58 | 56 57 | anbi12d |  | 
						
							| 59 |  | fveq2 |  | 
						
							| 60 | 59 | sseq2d |  | 
						
							| 61 | 58 60 | imbi12d |  | 
						
							| 62 |  | noel |  | 
						
							| 63 | 62 | pm2.21i |  | 
						
							| 64 | 63 | adantl |  | 
						
							| 65 | 64 | a1i |  | 
						
							| 66 |  | fvex |  | 
						
							| 67 | 66 | elsuc |  | 
						
							| 68 |  | sssucid |  | 
						
							| 69 |  | sstr |  | 
						
							| 70 | 68 69 | mpan |  | 
						
							| 71 | 70 | ad2antrl |  | 
						
							| 72 |  | simprr |  | 
						
							| 73 |  | pm2.27 |  | 
						
							| 74 | 71 72 73 | syl2anc |  | 
						
							| 75 | 6 | cantnfvalf |  | 
						
							| 76 | 75 | ffvelcdmi |  | 
						
							| 77 | 76 | ad2antlr |  | 
						
							| 78 | 2 | ad3antrrr |  | 
						
							| 79 | 3 | ad3antrrr |  | 
						
							| 80 |  | suppssdm |  | 
						
							| 81 | 80 24 | fssdm |  | 
						
							| 82 | 81 | ad3antrrr |  | 
						
							| 83 |  | simpr |  | 
						
							| 84 |  | sucidg |  | 
						
							| 85 | 84 | ad2antlr |  | 
						
							| 86 | 83 85 | sseldd |  | 
						
							| 87 | 4 | oif |  | 
						
							| 88 | 87 | ffvelcdmi |  | 
						
							| 89 | 86 88 | syl |  | 
						
							| 90 | 82 89 | sseldd |  | 
						
							| 91 |  | onelon |  | 
						
							| 92 | 79 90 91 | syl2anc |  | 
						
							| 93 |  | oecl |  | 
						
							| 94 | 78 92 93 | syl2anc |  | 
						
							| 95 | 24 | ad3antrrr |  | 
						
							| 96 | 95 90 | ffvelcdmd |  | 
						
							| 97 |  | onelon |  | 
						
							| 98 | 78 96 97 | syl2anc |  | 
						
							| 99 |  | omcl |  | 
						
							| 100 | 94 98 99 | syl2anc |  | 
						
							| 101 |  | oaword2 |  | 
						
							| 102 | 77 100 101 | syl2anc |  | 
						
							| 103 | 1 2 3 4 5 6 | cantnfsuc |  | 
						
							| 104 | 103 | ad4ant13 |  | 
						
							| 105 | 102 104 | sseqtrrd |  | 
						
							| 106 |  | sstr |  | 
						
							| 107 | 106 | expcom |  | 
						
							| 108 | 105 107 | syl |  | 
						
							| 109 | 108 | adantrr |  | 
						
							| 110 | 74 109 | syld |  | 
						
							| 111 | 110 | expr |  | 
						
							| 112 |  | simprr |  | 
						
							| 113 | 112 | fveq2d |  | 
						
							| 114 |  | f1ocnvfv2 |  | 
						
							| 115 | 17 32 114 | syl2anc |  | 
						
							| 116 | 115 | ad2antrr |  | 
						
							| 117 | 113 116 | eqtr3d |  | 
						
							| 118 | 117 | oveq2d |  | 
						
							| 119 | 117 | fveq2d |  | 
						
							| 120 | 118 119 | oveq12d |  | 
						
							| 121 |  | oaword1 |  | 
						
							| 122 | 100 77 121 | syl2anc |  | 
						
							| 123 | 122 | adantrr |  | 
						
							| 124 | 120 123 | eqsstrrd |  | 
						
							| 125 | 103 | ad4ant13 |  | 
						
							| 126 | 124 125 | sseqtrrd |  | 
						
							| 127 | 126 | expr |  | 
						
							| 128 | 127 | a1dd |  | 
						
							| 129 | 111 128 | jaod |  | 
						
							| 130 | 67 129 | biimtrid |  | 
						
							| 131 | 130 | expimpd |  | 
						
							| 132 | 131 | com23 |  | 
						
							| 133 | 132 | expcom |  | 
						
							| 134 | 49 55 61 65 133 | finds2 |  | 
						
							| 135 | 43 134 | vtoclga |  | 
						
							| 136 | 35 135 | mpcom |  | 
						
							| 137 | 33 136 | mpd |  | 
						
							| 138 | 1 2 3 4 5 6 | cantnfval |  | 
						
							| 139 | 138 | adantr |  | 
						
							| 140 | 137 139 | sseqtrrd |  | 
						
							| 141 |  | onelon |  | 
						
							| 142 | 3 7 141 | syl2anc |  | 
						
							| 143 |  | oecl |  | 
						
							| 144 | 2 142 143 | syl2anc |  | 
						
							| 145 |  | om0 |  | 
						
							| 146 | 144 145 | syl |  | 
						
							| 147 |  | 0ss |  | 
						
							| 148 | 146 147 | eqsstrdi |  | 
						
							| 149 | 9 140 148 | pm2.61ne |  |