Metamath Proof Explorer


Theorem cantnflem1a

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
oemapvali.r φ F T G
oemapvali.x X = c B | F c G c
Assertion cantnflem1a φ X supp G

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 oemapvali.r φ F T G
8 oemapvali.x X = c B | F c G c
9 1 2 3 4 5 6 7 8 oemapvali φ X B F X G X w B X w F w = G w
10 9 simp1d φ X B
11 9 simp2d φ F X G X
12 11 ne0d φ G X
13 1 2 3 cantnfs φ G S G : B A finSupp G
14 6 13 mpbid φ G : B A finSupp G
15 14 simpld φ G : B A
16 15 ffnd φ G Fn B
17 0ex V
18 17 a1i φ V
19 elsuppfn G Fn B B On V X supp G X B G X
20 16 3 18 19 syl3anc φ X supp G X B G X
21 10 12 20 mpbir2and φ X supp G