Metamath Proof Explorer


Theorem cantnflem1b

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
oemapvali.r φ F T G
oemapvali.x X = c B | F c G c
cantnflem1.o O = OrdIso E G supp
Assertion cantnflem1b φ suc u dom O O -1 X u X O u

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 oemapvali.r φ F T G
8 oemapvali.x X = c B | F c G c
9 cantnflem1.o O = OrdIso E G supp
10 simprr φ suc u dom O O -1 X u O -1 X u
11 9 oicl Ord dom O
12 ovexd φ G supp V
13 1 2 3 9 6 cantnfcl φ E We supp G dom O ω
14 13 simpld φ E We supp G
15 9 oiiso G supp V E We supp G O Isom E , E dom O G supp
16 12 14 15 syl2anc φ O Isom E , E dom O G supp
17 isof1o O Isom E , E dom O G supp O : dom O 1-1 onto G supp
18 16 17 syl φ O : dom O 1-1 onto G supp
19 f1ocnv O : dom O 1-1 onto G supp O -1 : G supp 1-1 onto dom O
20 f1of O -1 : G supp 1-1 onto dom O O -1 : G supp dom O
21 18 19 20 3syl φ O -1 : G supp dom O
22 1 2 3 4 5 6 7 8 cantnflem1a φ X supp G
23 21 22 ffvelrnd φ O -1 X dom O
24 ordelon Ord dom O O -1 X dom O O -1 X On
25 11 23 24 sylancr φ O -1 X On
26 11 a1i φ Ord dom O
27 ordelon Ord dom O suc u dom O suc u On
28 26 27 sylan φ suc u dom O suc u On
29 sucelon u On suc u On
30 28 29 sylibr φ suc u dom O u On
31 30 adantrr φ suc u dom O O -1 X u u On
32 ontri1 O -1 X On u On O -1 X u ¬ u O -1 X
33 25 31 32 syl2an2r φ suc u dom O O -1 X u O -1 X u ¬ u O -1 X
34 10 33 mpbid φ suc u dom O O -1 X u ¬ u O -1 X
35 16 adantr φ suc u dom O O -1 X u O Isom E , E dom O G supp
36 ordtr Ord dom O Tr dom O
37 11 36 mp1i φ suc u dom O O -1 X u Tr dom O
38 simprl φ suc u dom O O -1 X u suc u dom O
39 trsuc Tr dom O suc u dom O u dom O
40 37 38 39 syl2anc φ suc u dom O O -1 X u u dom O
41 23 adantr φ suc u dom O O -1 X u O -1 X dom O
42 isorel O Isom E , E dom O G supp u dom O O -1 X dom O u E O -1 X O u E O O -1 X
43 35 40 41 42 syl12anc φ suc u dom O O -1 X u u E O -1 X O u E O O -1 X
44 fvex O -1 X V
45 44 epeli u E O -1 X u O -1 X
46 fvex O O -1 X V
47 46 epeli O u E O O -1 X O u O O -1 X
48 43 45 47 3bitr3g φ suc u dom O O -1 X u u O -1 X O u O O -1 X
49 f1ocnvfv2 O : dom O 1-1 onto G supp X supp G O O -1 X = X
50 18 22 49 syl2anc φ O O -1 X = X
51 50 adantr φ suc u dom O O -1 X u O O -1 X = X
52 51 eleq2d φ suc u dom O O -1 X u O u O O -1 X O u X
53 48 52 bitrd φ suc u dom O O -1 X u u O -1 X O u X
54 34 53 mtbid φ suc u dom O O -1 X u ¬ O u X
55 1 2 3 4 5 6 7 8 oemapvali φ X B F X G X w B X w F w = G w
56 55 simp1d φ X B
57 onelon B On X B X On
58 3 56 57 syl2anc φ X On
59 suppssdm G supp dom G
60 1 2 3 cantnfs φ G S G : B A finSupp G
61 6 60 mpbid φ G : B A finSupp G
62 61 simpld φ G : B A
63 59 62 fssdm φ G supp B
64 63 adantr φ suc u dom O O -1 X u G supp B
65 9 oif O : dom O G supp
66 65 ffvelrni u dom O O u supp G
67 40 66 syl φ suc u dom O O -1 X u O u supp G
68 64 67 sseldd φ suc u dom O O -1 X u O u B
69 onelon B On O u B O u On
70 3 68 69 syl2an2r φ suc u dom O O -1 X u O u On
71 ontri1 X On O u On X O u ¬ O u X
72 58 70 71 syl2an2r φ suc u dom O O -1 X u X O u ¬ O u X
73 54 72 mpbird φ suc u dom O O -1 X u X O u