Metamath Proof Explorer


Theorem cantnflem1c

Description: Lemma for cantnf . (Contributed by Mario Carneiro, 4-Jun-2015) (Revised by AV, 2-Jul-2019) (Proof shortened by AV, 4-Apr-2020)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
oemapval.f φ F S
oemapval.g φ G S
oemapvali.r φ F T G
oemapvali.x X = c B | F c G c
cantnflem1.o O = OrdIso E G supp
Assertion cantnflem1c φ suc u dom O O -1 X u x B F x O u x x supp G

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 oemapval.f φ F S
6 oemapval.g φ G S
7 oemapvali.r φ F T G
8 oemapvali.x X = c B | F c G c
9 cantnflem1.o O = OrdIso E G supp
10 3 ad3antrrr φ suc u dom O O -1 X u x B F x O u x B On
11 simplr φ suc u dom O O -1 X u x B F x O u x x B
12 1 2 3 cantnfs φ G S G : B A finSupp G
13 6 12 mpbid φ G : B A finSupp G
14 13 simpld φ G : B A
15 14 ffnd φ G Fn B
16 15 ad3antrrr φ suc u dom O O -1 X u x B F x O u x G Fn B
17 1 2 3 4 5 6 7 8 9 cantnflem1b φ suc u dom O O -1 X u X O u
18 17 ad2antrr φ suc u dom O O -1 X u x B F x O u x X O u
19 simprr φ suc u dom O O -1 X u x B F x O u x O u x
20 1 2 3 4 5 6 7 8 oemapvali φ X B F X G X w B X w F w = G w
21 20 simp1d φ X B
22 onelon B On X B X On
23 3 21 22 syl2anc φ X On
24 23 ad3antrrr φ suc u dom O O -1 X u x B F x O u x X On
25 onss B On B On
26 3 25 syl φ B On
27 26 sselda φ x B x On
28 27 ad4ant13 φ suc u dom O O -1 X u x B F x O u x x On
29 ontr2 X On x On X O u O u x X x
30 24 28 29 syl2anc φ suc u dom O O -1 X u x B F x O u x X O u O u x X x
31 18 19 30 mp2and φ suc u dom O O -1 X u x B F x O u x X x
32 eleq2w w = x X w X x
33 fveq2 w = x F w = F x
34 fveq2 w = x G w = G x
35 33 34 eqeq12d w = x F w = G w F x = G x
36 32 35 imbi12d w = x X w F w = G w X x F x = G x
37 20 simp3d φ w B X w F w = G w
38 37 ad3antrrr φ suc u dom O O -1 X u x B F x O u x w B X w F w = G w
39 36 38 11 rspcdva φ suc u dom O O -1 X u x B F x O u x X x F x = G x
40 31 39 mpd φ suc u dom O O -1 X u x B F x O u x F x = G x
41 simprl φ suc u dom O O -1 X u x B F x O u x F x
42 40 41 eqnetrrd φ suc u dom O O -1 X u x B F x O u x G x
43 fvn0elsupp B On x B G Fn B G x x supp G
44 10 11 16 42 43 syl22anc φ suc u dom O O -1 X u x B F x O u x x supp G