Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
oemapval.t |
|
5 |
|
oemapval.f |
|
6 |
|
oemapval.g |
|
7 |
|
oemapvali.r |
|
8 |
|
oemapvali.x |
|
9 |
|
cantnflem1.o |
|
10 |
|
cantnflem1.h |
|
11 |
1 2 3 4 5 6 7 8
|
oemapvali |
|
12 |
11
|
simp1d |
|
13 |
|
onelon |
|
14 |
3 12 13
|
syl2anc |
|
15 |
|
oecl |
|
16 |
2 14 15
|
syl2anc |
|
17 |
1 2 3
|
cantnfs |
|
18 |
6 17
|
mpbid |
|
19 |
18
|
simpld |
|
20 |
19 12
|
ffvelrnd |
|
21 |
|
onelon |
|
22 |
2 20 21
|
syl2anc |
|
23 |
|
omcl |
|
24 |
16 22 23
|
syl2anc |
|
25 |
|
ovexd |
|
26 |
1 2 3 9 6
|
cantnfcl |
|
27 |
26
|
simpld |
|
28 |
9
|
oiiso |
|
29 |
25 27 28
|
syl2anc |
|
30 |
|
isof1o |
|
31 |
29 30
|
syl |
|
32 |
|
f1ocnv |
|
33 |
|
f1of |
|
34 |
31 32 33
|
3syl |
|
35 |
1 2 3 4 5 6 7 8
|
cantnflem1a |
|
36 |
34 35
|
ffvelrnd |
|
37 |
26
|
simprd |
|
38 |
|
elnn |
|
39 |
36 37 38
|
syl2anc |
|
40 |
10
|
cantnfvalf |
|
41 |
40
|
ffvelrni |
|
42 |
39 41
|
syl |
|
43 |
|
oaword1 |
|
44 |
24 42 43
|
syl2anc |
|
45 |
1 2 3 9 6 10
|
cantnfsuc |
|
46 |
39 45
|
mpdan |
|
47 |
|
f1ocnvfv2 |
|
48 |
31 35 47
|
syl2anc |
|
49 |
48
|
oveq2d |
|
50 |
48
|
fveq2d |
|
51 |
49 50
|
oveq12d |
|
52 |
51
|
oveq1d |
|
53 |
46 52
|
eqtrd |
|
54 |
44 53
|
sseqtrrd |
|
55 |
|
onss |
|
56 |
3 55
|
syl |
|
57 |
56
|
sselda |
|
58 |
14
|
adantr |
|
59 |
|
onsseleq |
|
60 |
57 58 59
|
syl2anc |
|
61 |
|
orcom |
|
62 |
60 61
|
bitrdi |
|
63 |
62
|
ifbid |
|
64 |
63
|
mpteq2dva |
|
65 |
64
|
fveq2d |
|
66 |
1 2 3
|
cantnfs |
|
67 |
5 66
|
mpbid |
|
68 |
67
|
simpld |
|
69 |
68
|
ffvelrnda |
|
70 |
20
|
ne0d |
|
71 |
|
on0eln0 |
|
72 |
2 71
|
syl |
|
73 |
70 72
|
mpbird |
|
74 |
73
|
adantr |
|
75 |
69 74
|
ifcld |
|
76 |
75
|
fmpttd |
|
77 |
|
0ex |
|
78 |
77
|
a1i |
|
79 |
67
|
simprd |
|
80 |
68 3 78 79
|
fsuppmptif |
|
81 |
1 2 3
|
cantnfs |
|
82 |
76 80 81
|
mpbir2and |
|
83 |
68 12
|
ffvelrnd |
|
84 |
|
eldifn |
|
85 |
84
|
adantl |
|
86 |
85
|
iffalsed |
|
87 |
86 3
|
suppss2 |
|
88 |
|
ifor |
|
89 |
|
fveq2 |
|
90 |
89
|
adantl |
|
91 |
90
|
ifeq1da |
|
92 |
|
eleq1w |
|
93 |
|
fveq2 |
|
94 |
92 93
|
ifbieq1d |
|
95 |
|
eqid |
|
96 |
|
fvex |
|
97 |
96 77
|
ifex |
|
98 |
94 95 97
|
fvmpt |
|
99 |
98
|
ifeq2d |
|
100 |
91 99
|
eqtr3d |
|
101 |
88 100
|
eqtr4id |
|
102 |
101
|
mpteq2ia |
|
103 |
1 2 3 82 12 83 87 102
|
cantnfp1 |
|
104 |
103
|
simprd |
|
105 |
65 104
|
eqtrd |
|
106 |
|
onelon |
|
107 |
2 83 106
|
syl2anc |
|
108 |
|
omsuc |
|
109 |
16 107 108
|
syl2anc |
|
110 |
|
eloni |
|
111 |
22 110
|
syl |
|
112 |
11
|
simp2d |
|
113 |
|
ordsucss |
|
114 |
111 112 113
|
sylc |
|
115 |
|
suceloni |
|
116 |
107 115
|
syl |
|
117 |
|
omwordi |
|
118 |
116 22 16 117
|
syl3anc |
|
119 |
114 118
|
mpd |
|
120 |
109 119
|
eqsstrrd |
|
121 |
1 2 3 82 73 14 87
|
cantnflt2 |
|
122 |
|
onelon |
|
123 |
16 121 122
|
syl2anc |
|
124 |
|
omcl |
|
125 |
16 107 124
|
syl2anc |
|
126 |
|
oaord |
|
127 |
123 16 125 126
|
syl3anc |
|
128 |
121 127
|
mpbid |
|
129 |
120 128
|
sseldd |
|
130 |
105 129
|
eqeltrd |
|
131 |
54 130
|
sseldd |
|