| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  | 
						
							| 2 |  | cantnfs.a |  | 
						
							| 3 |  | cantnfs.b |  | 
						
							| 4 |  | oemapval.t |  | 
						
							| 5 |  | cantnf.c |  | 
						
							| 6 |  | cantnf.s |  | 
						
							| 7 |  | cantnf.e |  | 
						
							| 8 |  | oecl |  | 
						
							| 9 | 2 3 8 | syl2anc |  | 
						
							| 10 |  | onelon |  | 
						
							| 11 | 9 5 10 | syl2anc |  | 
						
							| 12 |  | ondif1 |  | 
						
							| 13 | 11 7 12 | sylanbrc |  | 
						
							| 14 | 13 | eldifbd |  | 
						
							| 15 |  | ssel |  | 
						
							| 16 | 5 15 | syl5com |  | 
						
							| 17 | 14 16 | mtod |  | 
						
							| 18 |  | oe0m |  | 
						
							| 19 | 3 18 | syl |  | 
						
							| 20 |  | difss |  | 
						
							| 21 | 19 20 | eqsstrdi |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 | 22 | sseq1d |  | 
						
							| 24 | 21 23 | syl5ibrcom |  | 
						
							| 25 |  | oe1m |  | 
						
							| 26 |  | eqimss |  | 
						
							| 27 | 3 25 26 | 3syl |  | 
						
							| 28 |  | oveq1 |  | 
						
							| 29 | 28 | sseq1d |  | 
						
							| 30 | 27 29 | syl5ibrcom |  | 
						
							| 31 | 24 30 | jaod |  | 
						
							| 32 | 17 31 | mtod |  | 
						
							| 33 |  | elpri |  | 
						
							| 34 |  | df2o3 |  | 
						
							| 35 | 33 34 | eleq2s |  | 
						
							| 36 | 32 35 | nsyl |  | 
						
							| 37 | 2 36 | eldifd |  | 
						
							| 38 | 37 13 | jca |  |