Metamath Proof Explorer


Theorem cantnflem3

Description: Lemma for cantnf . Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than C has a normal form, we can use oeeu to factor C into the form ( ( A ^o X ) .o Y ) +o Z where 0 < Y < A and Z < ( A ^o X ) (and a fortiori X < B ). Then since Z < ( A ^o X ) <_ ( A ^o X ) .o Y <_ C , Z has a normal form, and by appending the term ( A ^o X ) .o Y using cantnfp1 we get a normal form for C . (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
cantnf.c φ C A 𝑜 B
cantnf.s φ C ran A CNF B
cantnf.e φ C
cantnf.x X = c On | C A 𝑜 c
cantnf.p P = ι d | a On b A 𝑜 X d = a b A 𝑜 X 𝑜 a + 𝑜 b = C
cantnf.y Y = 1 st P
cantnf.z Z = 2 nd P
cantnf.g φ G S
cantnf.v φ A CNF B G = Z
cantnf.f F = t B if t = X Y G t
Assertion cantnflem3 φ C ran A CNF B

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 cantnf.c φ C A 𝑜 B
6 cantnf.s φ C ran A CNF B
7 cantnf.e φ C
8 cantnf.x X = c On | C A 𝑜 c
9 cantnf.p P = ι d | a On b A 𝑜 X d = a b A 𝑜 X 𝑜 a + 𝑜 b = C
10 cantnf.y Y = 1 st P
11 cantnf.z Z = 2 nd P
12 cantnf.g φ G S
13 cantnf.v φ A CNF B G = Z
14 cantnf.f F = t B if t = X Y G t
15 1 2 3 4 5 6 7 cantnflem2 φ A On 2 𝑜 C On 1 𝑜
16 eqid X = X
17 eqid Y = Y
18 eqid Z = Z
19 16 17 18 3pm3.2i X = X Y = Y Z = Z
20 8 9 10 11 oeeui A On 2 𝑜 C On 1 𝑜 X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C X = X Y = Y Z = Z
21 19 20 mpbiri A On 2 𝑜 C On 1 𝑜 X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C
22 15 21 syl φ X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C
23 22 simpld φ X On Y A 1 𝑜 Z A 𝑜 X
24 23 simp1d φ X On
25 oecl A On X On A 𝑜 X On
26 2 24 25 syl2anc φ A 𝑜 X On
27 23 simp2d φ Y A 1 𝑜
28 27 eldifad φ Y A
29 onelon A On Y A Y On
30 2 28 29 syl2anc φ Y On
31 dif1o Y A 1 𝑜 Y A Y
32 31 simprbi Y A 1 𝑜 Y
33 27 32 syl φ Y
34 on0eln0 Y On Y Y
35 30 34 syl φ Y Y
36 33 35 mpbird φ Y
37 omword1 A 𝑜 X On Y On Y A 𝑜 X A 𝑜 X 𝑜 Y
38 26 30 36 37 syl21anc φ A 𝑜 X A 𝑜 X 𝑜 Y
39 omcl A 𝑜 X On Y On A 𝑜 X 𝑜 Y On
40 26 30 39 syl2anc φ A 𝑜 X 𝑜 Y On
41 23 simp3d φ Z A 𝑜 X
42 onelon A 𝑜 X On Z A 𝑜 X Z On
43 26 41 42 syl2anc φ Z On
44 oaword1 A 𝑜 X 𝑜 Y On Z On A 𝑜 X 𝑜 Y A 𝑜 X 𝑜 Y + 𝑜 Z
45 40 43 44 syl2anc φ A 𝑜 X 𝑜 Y A 𝑜 X 𝑜 Y + 𝑜 Z
46 22 simprd φ A 𝑜 X 𝑜 Y + 𝑜 Z = C
47 45 46 sseqtrd φ A 𝑜 X 𝑜 Y C
48 38 47 sstrd φ A 𝑜 X C
49 oecl A On B On A 𝑜 B On
50 2 3 49 syl2anc φ A 𝑜 B On
51 ontr2 A 𝑜 X On A 𝑜 B On A 𝑜 X C C A 𝑜 B A 𝑜 X A 𝑜 B
52 26 50 51 syl2anc φ A 𝑜 X C C A 𝑜 B A 𝑜 X A 𝑜 B
53 48 5 52 mp2and φ A 𝑜 X A 𝑜 B
54 15 simpld φ A On 2 𝑜
55 oeord X On B On A On 2 𝑜 X B A 𝑜 X A 𝑜 B
56 24 3 54 55 syl3anc φ X B A 𝑜 X A 𝑜 B
57 53 56 mpbird φ X B
58 2 adantr φ x supp G A On
59 3 adantr φ x supp G B On
60 suppssdm G supp dom G
61 1 2 3 cantnfs φ G S G : B A finSupp G
62 12 61 mpbid φ G : B A finSupp G
63 62 simpld φ G : B A
64 60 63 fssdm φ G supp B
65 64 sselda φ x supp G x B
66 onelon B On x B x On
67 59 65 66 syl2anc φ x supp G x On
68 oecl A On x On A 𝑜 x On
69 58 67 68 syl2anc φ x supp G A 𝑜 x On
70 63 adantr φ x supp G G : B A
71 70 65 ffvelrnd φ x supp G G x A
72 onelon A On G x A G x On
73 58 71 72 syl2anc φ x supp G G x On
74 63 ffnd φ G Fn B
75 7 elexd φ V
76 elsuppfn G Fn B B On V x supp G x B G x
77 74 3 75 76 syl3anc φ x supp G x B G x
78 77 simplbda φ x supp G G x
79 on0eln0 G x On G x G x
80 73 79 syl φ x supp G G x G x
81 78 80 mpbird φ x supp G G x
82 omword1 A 𝑜 x On G x On G x A 𝑜 x A 𝑜 x 𝑜 G x
83 69 73 81 82 syl21anc φ x supp G A 𝑜 x A 𝑜 x 𝑜 G x
84 eqid OrdIso E G supp = OrdIso E G supp
85 12 adantr φ x supp G G S
86 eqid seq ω k V , z V A 𝑜 OrdIso E G supp k 𝑜 G OrdIso E G supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E G supp k 𝑜 G OrdIso E G supp k + 𝑜 z
87 1 58 59 84 85 86 65 cantnfle φ x supp G A 𝑜 x 𝑜 G x A CNF B G
88 13 adantr φ x supp G A CNF B G = Z
89 87 88 sseqtrd φ x supp G A 𝑜 x 𝑜 G x Z
90 83 89 sstrd φ x supp G A 𝑜 x Z
91 41 adantr φ x supp G Z A 𝑜 X
92 26 adantr φ x supp G A 𝑜 X On
93 ontr2 A 𝑜 x On A 𝑜 X On A 𝑜 x Z Z A 𝑜 X A 𝑜 x A 𝑜 X
94 69 92 93 syl2anc φ x supp G A 𝑜 x Z Z A 𝑜 X A 𝑜 x A 𝑜 X
95 90 91 94 mp2and φ x supp G A 𝑜 x A 𝑜 X
96 24 adantr φ x supp G X On
97 54 adantr φ x supp G A On 2 𝑜
98 oeord x On X On A On 2 𝑜 x X A 𝑜 x A 𝑜 X
99 67 96 97 98 syl3anc φ x supp G x X A 𝑜 x A 𝑜 X
100 95 99 mpbird φ x supp G x X
101 100 ex φ x supp G x X
102 101 ssrdv φ G supp X
103 1 2 3 12 57 28 102 14 cantnfp1 φ F S A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
104 103 simprd φ A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
105 13 oveq2d φ A 𝑜 X 𝑜 Y + 𝑜 A CNF B G = A 𝑜 X 𝑜 Y + 𝑜 Z
106 104 105 46 3eqtrd φ A CNF B F = C
107 1 2 3 cantnff φ A CNF B : S A 𝑜 B
108 107 ffnd φ A CNF B Fn S
109 103 simpld φ F S
110 fnfvelrn A CNF B Fn S F S A CNF B F ran A CNF B
111 108 109 110 syl2anc φ A CNF B F ran A CNF B
112 106 111 eqeltrrd φ C ran A CNF B