Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
oemapval.t |
|
5 |
|
cantnf.c |
|
6 |
|
cantnf.s |
|
7 |
|
cantnf.e |
|
8 |
|
cantnf.x |
|
9 |
|
cantnf.p |
|
10 |
|
cantnf.y |
|
11 |
|
cantnf.z |
|
12 |
1 2 3 4 5 6 7
|
cantnflem2 |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
13 14 15
|
3pm3.2i |
|
17 |
8 9 10 11
|
oeeui |
|
18 |
16 17
|
mpbiri |
|
19 |
12 18
|
syl |
|
20 |
19
|
simpld |
|
21 |
20
|
simp1d |
|
22 |
|
oecl |
|
23 |
2 21 22
|
syl2anc |
|
24 |
20
|
simp2d |
|
25 |
24
|
eldifad |
|
26 |
|
onelon |
|
27 |
2 25 26
|
syl2anc |
|
28 |
|
omcl |
|
29 |
23 27 28
|
syl2anc |
|
30 |
20
|
simp3d |
|
31 |
|
onelon |
|
32 |
23 30 31
|
syl2anc |
|
33 |
|
oaword1 |
|
34 |
29 32 33
|
syl2anc |
|
35 |
|
dif1o |
|
36 |
35
|
simprbi |
|
37 |
24 36
|
syl |
|
38 |
|
on0eln0 |
|
39 |
27 38
|
syl |
|
40 |
37 39
|
mpbird |
|
41 |
|
omword1 |
|
42 |
23 27 40 41
|
syl21anc |
|
43 |
42 30
|
sseldd |
|
44 |
34 43
|
sseldd |
|
45 |
19
|
simprd |
|
46 |
44 45
|
eleqtrd |
|
47 |
6 46
|
sseldd |
|
48 |
1 2 3
|
cantnff |
|
49 |
|
ffn |
|
50 |
|
fvelrnb |
|
51 |
48 49 50
|
3syl |
|
52 |
47 51
|
mpbid |
|
53 |
2
|
adantr |
|
54 |
3
|
adantr |
|
55 |
5
|
adantr |
|
56 |
6
|
adantr |
|
57 |
7
|
adantr |
|
58 |
|
simprl |
|
59 |
|
simprr |
|
60 |
|
eqid |
|
61 |
1 53 54 4 55 56 57 8 9 10 11 58 59 60
|
cantnflem3 |
|
62 |
52 61
|
rexlimddv |
|