Metamath Proof Explorer


Theorem cantnflem4

Description: Lemma for cantnf . Complete the induction step of cantnflem3 . (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
oemapval.t T = x y | z B x z y z w B z w x w = y w
cantnf.c φ C A 𝑜 B
cantnf.s φ C ran A CNF B
cantnf.e φ C
cantnf.x X = c On | C A 𝑜 c
cantnf.p P = ι d | a On b A 𝑜 X d = a b A 𝑜 X 𝑜 a + 𝑜 b = C
cantnf.y Y = 1 st P
cantnf.z Z = 2 nd P
Assertion cantnflem4 φ C ran A CNF B

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 oemapval.t T = x y | z B x z y z w B z w x w = y w
5 cantnf.c φ C A 𝑜 B
6 cantnf.s φ C ran A CNF B
7 cantnf.e φ C
8 cantnf.x X = c On | C A 𝑜 c
9 cantnf.p P = ι d | a On b A 𝑜 X d = a b A 𝑜 X 𝑜 a + 𝑜 b = C
10 cantnf.y Y = 1 st P
11 cantnf.z Z = 2 nd P
12 1 2 3 4 5 6 7 cantnflem2 φ A On 2 𝑜 C On 1 𝑜
13 eqid X = X
14 eqid Y = Y
15 eqid Z = Z
16 13 14 15 3pm3.2i X = X Y = Y Z = Z
17 8 9 10 11 oeeui A On 2 𝑜 C On 1 𝑜 X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C X = X Y = Y Z = Z
18 16 17 mpbiri A On 2 𝑜 C On 1 𝑜 X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C
19 12 18 syl φ X On Y A 1 𝑜 Z A 𝑜 X A 𝑜 X 𝑜 Y + 𝑜 Z = C
20 19 simpld φ X On Y A 1 𝑜 Z A 𝑜 X
21 20 simp1d φ X On
22 oecl A On X On A 𝑜 X On
23 2 21 22 syl2anc φ A 𝑜 X On
24 20 simp2d φ Y A 1 𝑜
25 24 eldifad φ Y A
26 onelon A On Y A Y On
27 2 25 26 syl2anc φ Y On
28 omcl A 𝑜 X On Y On A 𝑜 X 𝑜 Y On
29 23 27 28 syl2anc φ A 𝑜 X 𝑜 Y On
30 20 simp3d φ Z A 𝑜 X
31 onelon A 𝑜 X On Z A 𝑜 X Z On
32 23 30 31 syl2anc φ Z On
33 oaword1 A 𝑜 X 𝑜 Y On Z On A 𝑜 X 𝑜 Y A 𝑜 X 𝑜 Y + 𝑜 Z
34 29 32 33 syl2anc φ A 𝑜 X 𝑜 Y A 𝑜 X 𝑜 Y + 𝑜 Z
35 dif1o Y A 1 𝑜 Y A Y
36 35 simprbi Y A 1 𝑜 Y
37 24 36 syl φ Y
38 on0eln0 Y On Y Y
39 27 38 syl φ Y Y
40 37 39 mpbird φ Y
41 omword1 A 𝑜 X On Y On Y A 𝑜 X A 𝑜 X 𝑜 Y
42 23 27 40 41 syl21anc φ A 𝑜 X A 𝑜 X 𝑜 Y
43 42 30 sseldd φ Z A 𝑜 X 𝑜 Y
44 34 43 sseldd φ Z A 𝑜 X 𝑜 Y + 𝑜 Z
45 19 simprd φ A 𝑜 X 𝑜 Y + 𝑜 Z = C
46 44 45 eleqtrd φ Z C
47 6 46 sseldd φ Z ran A CNF B
48 1 2 3 cantnff φ A CNF B : S A 𝑜 B
49 ffn A CNF B : S A 𝑜 B A CNF B Fn S
50 fvelrnb A CNF B Fn S Z ran A CNF B g S A CNF B g = Z
51 48 49 50 3syl φ Z ran A CNF B g S A CNF B g = Z
52 47 51 mpbid φ g S A CNF B g = Z
53 2 adantr φ g S A CNF B g = Z A On
54 3 adantr φ g S A CNF B g = Z B On
55 5 adantr φ g S A CNF B g = Z C A 𝑜 B
56 6 adantr φ g S A CNF B g = Z C ran A CNF B
57 7 adantr φ g S A CNF B g = Z C
58 simprl φ g S A CNF B g = Z g S
59 simprr φ g S A CNF B g = Z A CNF B g = Z
60 eqid t B if t = X Y g t = t B if t = X Y g t
61 1 53 54 4 55 56 57 8 9 10 11 58 59 60 cantnflem3 φ g S A CNF B g = Z C ran A CNF B
62 52 61 rexlimddv φ C ran A CNF B