Metamath Proof Explorer


Theorem cantnflt2

Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 29-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnflt2.f φ F S
cantnflt2.a φ A
cantnflt2.c φ C On
cantnflt2.s φ F supp C
Assertion cantnflt2 φ A CNF B F A 𝑜 C

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnflt2.f φ F S
5 cantnflt2.a φ A
6 cantnflt2.c φ C On
7 cantnflt2.s φ F supp C
8 eqid OrdIso E F supp = OrdIso E F supp
9 eqid seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z
10 1 2 3 8 4 9 cantnfval φ A CNF B F = seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z dom OrdIso E F supp
11 ovexd φ F supp V
12 8 oion F supp V dom OrdIso E F supp On
13 sucidg dom OrdIso E F supp On dom OrdIso E F supp suc dom OrdIso E F supp
14 11 12 13 3syl φ dom OrdIso E F supp suc dom OrdIso E F supp
15 1 2 3 8 4 cantnfcl φ E We supp F dom OrdIso E F supp ω
16 15 simpld φ E We supp F
17 8 oiiso F supp V E We supp F OrdIso E F supp Isom E , E dom OrdIso E F supp F supp
18 11 16 17 syl2anc φ OrdIso E F supp Isom E , E dom OrdIso E F supp F supp
19 isof1o OrdIso E F supp Isom E , E dom OrdIso E F supp F supp OrdIso E F supp : dom OrdIso E F supp 1-1 onto F supp
20 f1ofo OrdIso E F supp : dom OrdIso E F supp 1-1 onto F supp OrdIso E F supp : dom OrdIso E F supp onto F supp
21 foima OrdIso E F supp : dom OrdIso E F supp onto F supp OrdIso E F supp dom OrdIso E F supp = F supp
22 18 19 20 21 4syl φ OrdIso E F supp dom OrdIso E F supp = F supp
23 22 7 eqsstrd φ OrdIso E F supp dom OrdIso E F supp C
24 1 2 3 8 4 9 5 14 6 23 cantnflt φ seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z dom OrdIso E F supp A 𝑜 C
25 10 24 eqeltrd φ A CNF B F A 𝑜 C