Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
cantnfp1.g |
|
5 |
|
cantnfp1.x |
|
6 |
|
cantnfp1.y |
|
7 |
|
cantnfp1.s |
|
8 |
|
cantnfp1.f |
|
9 |
|
onelon |
|
10 |
3 5 9
|
syl2anc |
|
11 |
|
eloni |
|
12 |
|
ordirr |
|
13 |
10 11 12
|
3syl |
|
14 |
|
fvex |
|
15 |
|
dif1o |
|
16 |
14 15
|
mpbiran |
|
17 |
1 2 3
|
cantnfs |
|
18 |
4 17
|
mpbid |
|
19 |
18
|
simpld |
|
20 |
19
|
ffnd |
|
21 |
|
0ex |
|
22 |
21
|
a1i |
|
23 |
|
elsuppfn |
|
24 |
20 3 22 23
|
syl3anc |
|
25 |
16
|
bicomi |
|
26 |
25
|
a1i |
|
27 |
26
|
anbi2d |
|
28 |
24 27
|
bitrd |
|
29 |
7
|
sseld |
|
30 |
28 29
|
sylbird |
|
31 |
5 30
|
mpand |
|
32 |
16 31
|
syl5bir |
|
33 |
32
|
necon1bd |
|
34 |
13 33
|
mpd |
|
35 |
34
|
ad3antrrr |
|
36 |
|
simpr |
|
37 |
36
|
fveq2d |
|
38 |
|
simpllr |
|
39 |
35 37 38
|
3eqtr4rd |
|
40 |
|
eqidd |
|
41 |
39 40
|
ifeqda |
|
42 |
41
|
mpteq2dva |
|
43 |
8 42
|
eqtrid |
|
44 |
19
|
feqmptd |
|
45 |
44
|
adantr |
|
46 |
43 45
|
eqtr4d |
|
47 |
4
|
adantr |
|
48 |
46 47
|
eqeltrd |
|
49 |
|
oecl |
|
50 |
2 3 49
|
syl2anc |
|
51 |
1 2 3
|
cantnff |
|
52 |
51 4
|
ffvelrnd |
|
53 |
|
onelon |
|
54 |
50 52 53
|
syl2anc |
|
55 |
54
|
adantr |
|
56 |
|
oa0r |
|
57 |
55 56
|
syl |
|
58 |
|
oveq2 |
|
59 |
|
oecl |
|
60 |
2 10 59
|
syl2anc |
|
61 |
|
om0 |
|
62 |
60 61
|
syl |
|
63 |
58 62
|
sylan9eqr |
|
64 |
63
|
oveq1d |
|
65 |
46
|
fveq2d |
|
66 |
57 64 65
|
3eqtr4rd |
|
67 |
48 66
|
jca |
|
68 |
2
|
adantr |
|
69 |
3
|
adantr |
|
70 |
4
|
adantr |
|
71 |
5
|
adantr |
|
72 |
6
|
adantr |
|
73 |
7
|
adantr |
|
74 |
1 68 69 70 71 72 73 8
|
cantnfp1lem1 |
|
75 |
|
onelon |
|
76 |
2 6 75
|
syl2anc |
|
77 |
|
on0eln0 |
|
78 |
76 77
|
syl |
|
79 |
78
|
biimpar |
|
80 |
|
eqid |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
1 68 69 70 71 72 73 8 79 80 81 82 83
|
cantnfp1lem3 |
|
85 |
74 84
|
jca |
|
86 |
67 85
|
pm2.61dane |
|