Metamath Proof Explorer


Theorem cantnfp1

Description: If F is created by adding a single term ( FX ) = Y to G , where X is larger than any element of the support of G , then F is also a finitely supported function and it is assigned the value ( ( A ^o X ) .o Y ) +o z where z is the value of G . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 1-Jul-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfp1.g φ G S
cantnfp1.x φ X B
cantnfp1.y φ Y A
cantnfp1.s φ G supp X
cantnfp1.f F = t B if t = X Y G t
Assertion cantnfp1 φ F S A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfp1.g φ G S
5 cantnfp1.x φ X B
6 cantnfp1.y φ Y A
7 cantnfp1.s φ G supp X
8 cantnfp1.f F = t B if t = X Y G t
9 onelon B On X B X On
10 3 5 9 syl2anc φ X On
11 eloni X On Ord X
12 ordirr Ord X ¬ X X
13 10 11 12 3syl φ ¬ X X
14 fvex G X V
15 dif1o G X V 1 𝑜 G X V G X
16 14 15 mpbiran G X V 1 𝑜 G X
17 1 2 3 cantnfs φ G S G : B A finSupp G
18 4 17 mpbid φ G : B A finSupp G
19 18 simpld φ G : B A
20 19 ffnd φ G Fn B
21 0ex V
22 21 a1i φ V
23 elsuppfn G Fn B B On V X supp G X B G X
24 20 3 22 23 syl3anc φ X supp G X B G X
25 16 bicomi G X G X V 1 𝑜
26 25 a1i φ G X G X V 1 𝑜
27 26 anbi2d φ X B G X X B G X V 1 𝑜
28 24 27 bitrd φ X supp G X B G X V 1 𝑜
29 7 sseld φ X supp G X X
30 28 29 sylbird φ X B G X V 1 𝑜 X X
31 5 30 mpand φ G X V 1 𝑜 X X
32 16 31 syl5bir φ G X X X
33 32 necon1bd φ ¬ X X G X =
34 13 33 mpd φ G X =
35 34 ad3antrrr φ Y = t B t = X G X =
36 simpr φ Y = t B t = X t = X
37 36 fveq2d φ Y = t B t = X G t = G X
38 simpllr φ Y = t B t = X Y =
39 35 37 38 3eqtr4rd φ Y = t B t = X Y = G t
40 eqidd φ Y = t B ¬ t = X G t = G t
41 39 40 ifeqda φ Y = t B if t = X Y G t = G t
42 41 mpteq2dva φ Y = t B if t = X Y G t = t B G t
43 8 42 eqtrid φ Y = F = t B G t
44 19 feqmptd φ G = t B G t
45 44 adantr φ Y = G = t B G t
46 43 45 eqtr4d φ Y = F = G
47 4 adantr φ Y = G S
48 46 47 eqeltrd φ Y = F S
49 oecl A On B On A 𝑜 B On
50 2 3 49 syl2anc φ A 𝑜 B On
51 1 2 3 cantnff φ A CNF B : S A 𝑜 B
52 51 4 ffvelrnd φ A CNF B G A 𝑜 B
53 onelon A 𝑜 B On A CNF B G A 𝑜 B A CNF B G On
54 50 52 53 syl2anc φ A CNF B G On
55 54 adantr φ Y = A CNF B G On
56 oa0r A CNF B G On + 𝑜 A CNF B G = A CNF B G
57 55 56 syl φ Y = + 𝑜 A CNF B G = A CNF B G
58 oveq2 Y = A 𝑜 X 𝑜 Y = A 𝑜 X 𝑜
59 oecl A On X On A 𝑜 X On
60 2 10 59 syl2anc φ A 𝑜 X On
61 om0 A 𝑜 X On A 𝑜 X 𝑜 =
62 60 61 syl φ A 𝑜 X 𝑜 =
63 58 62 sylan9eqr φ Y = A 𝑜 X 𝑜 Y =
64 63 oveq1d φ Y = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G = + 𝑜 A CNF B G
65 46 fveq2d φ Y = A CNF B F = A CNF B G
66 57 64 65 3eqtr4rd φ Y = A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
67 48 66 jca φ Y = F S A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
68 2 adantr φ Y A On
69 3 adantr φ Y B On
70 4 adantr φ Y G S
71 5 adantr φ Y X B
72 6 adantr φ Y Y A
73 7 adantr φ Y G supp X
74 1 68 69 70 71 72 73 8 cantnfp1lem1 φ Y F S
75 onelon A On Y A Y On
76 2 6 75 syl2anc φ Y On
77 on0eln0 Y On Y Y
78 76 77 syl φ Y Y
79 78 biimpar φ Y Y
80 eqid OrdIso E F supp = OrdIso E F supp
81 eqid seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E F supp k 𝑜 F OrdIso E F supp k + 𝑜 z
82 eqid OrdIso E G supp = OrdIso E G supp
83 eqid seq ω k V , z V A 𝑜 OrdIso E G supp k 𝑜 G OrdIso E G supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E G supp k 𝑜 G OrdIso E G supp k + 𝑜 z
84 1 68 69 70 71 72 73 8 79 80 81 82 83 cantnfp1lem3 φ Y A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
85 74 84 jca φ Y F S A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G
86 67 85 pm2.61dane φ F S A CNF B F = A 𝑜 X 𝑜 Y + 𝑜 A CNF B G