Metamath Proof Explorer


Theorem cantnfp1lem1

Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 20-Jun-2015) (Revised by AV, 30-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfp1.g φ G S
cantnfp1.x φ X B
cantnfp1.y φ Y A
cantnfp1.s φ G supp X
cantnfp1.f F = t B if t = X Y G t
Assertion cantnfp1lem1 φ F S

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfp1.g φ G S
5 cantnfp1.x φ X B
6 cantnfp1.y φ Y A
7 cantnfp1.s φ G supp X
8 cantnfp1.f F = t B if t = X Y G t
9 6 adantr φ t B Y A
10 1 2 3 cantnfs φ G S G : B A finSupp G
11 4 10 mpbid φ G : B A finSupp G
12 11 simpld φ G : B A
13 12 ffvelrnda φ t B G t A
14 9 13 ifcld φ t B if t = X Y G t A
15 14 8 fmptd φ F : B A
16 11 simprd φ finSupp G
17 16 fsuppimpd φ G supp Fin
18 snfi X Fin
19 unfi G supp Fin X Fin supp G X Fin
20 17 18 19 sylancl φ supp G X Fin
21 eqeq1 t = k t = X k = X
22 fveq2 t = k G t = G k
23 21 22 ifbieq2d t = k if t = X Y G t = if k = X Y G k
24 eldifi k B supp G X k B
25 24 adantl φ k B supp G X k B
26 6 adantr φ k B supp G X Y A
27 fvex G k V
28 ifexg Y A G k V if k = X Y G k V
29 26 27 28 sylancl φ k B supp G X if k = X Y G k V
30 8 23 25 29 fvmptd3 φ k B supp G X F k = if k = X Y G k
31 eldifn k B supp G X ¬ k supp G X
32 31 adantl φ k B supp G X ¬ k supp G X
33 velsn k X k = X
34 elun2 k X k supp G X
35 33 34 sylbir k = X k supp G X
36 32 35 nsyl φ k B supp G X ¬ k = X
37 36 iffalsed φ k B supp G X if k = X Y G k = G k
38 ssun1 G supp supp G X
39 sscon G supp supp G X B supp G X B supp G
40 38 39 ax-mp B supp G X B supp G
41 40 sseli k B supp G X k B supp G
42 ssidd φ G supp G supp
43 0ex V
44 43 a1i φ V
45 12 42 3 44 suppssr φ k B supp G G k =
46 41 45 sylan2 φ k B supp G X G k =
47 30 37 46 3eqtrd φ k B supp G X F k =
48 15 47 suppss φ F supp supp G X
49 20 48 ssfid φ F supp Fin
50 8 funmpt2 Fun F
51 mptexg B On t B if t = X Y G t V
52 8 51 eqeltrid B On F V
53 3 52 syl φ F V
54 funisfsupp Fun F F V V finSupp F F supp Fin
55 50 53 44 54 mp3an2i φ finSupp F F supp Fin
56 49 55 mpbird φ finSupp F
57 1 2 3 cantnfs φ F S F : B A finSupp F
58 15 56 57 mpbir2and φ F S