Metamath Proof Explorer


Theorem cantnfp1lem2

Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 30-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfp1.g φ G S
cantnfp1.x φ X B
cantnfp1.y φ Y A
cantnfp1.s φ G supp X
cantnfp1.f F = t B if t = X Y G t
cantnfp1.e φ Y
cantnfp1.o O = OrdIso E F supp
Assertion cantnfp1lem2 φ dom O = suc dom O

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfp1.g φ G S
5 cantnfp1.x φ X B
6 cantnfp1.y φ Y A
7 cantnfp1.s φ G supp X
8 cantnfp1.f F = t B if t = X Y G t
9 cantnfp1.e φ Y
10 cantnfp1.o O = OrdIso E F supp
11 iftrue t = X if t = X Y G t = Y
12 8 11 5 6 fvmptd3 φ F X = Y
13 9 ne0d φ Y
14 12 13 eqnetrd φ F X
15 6 adantr φ t B Y A
16 1 2 3 cantnfs φ G S G : B A finSupp G
17 4 16 mpbid φ G : B A finSupp G
18 17 simpld φ G : B A
19 18 ffvelrnda φ t B G t A
20 15 19 ifcld φ t B if t = X Y G t A
21 20 8 fmptd φ F : B A
22 21 ffnd φ F Fn B
23 9 elexd φ V
24 elsuppfn F Fn B B On V X supp F X B F X
25 22 3 23 24 syl3anc φ X supp F X B F X
26 5 14 25 mpbir2and φ X supp F
27 n0i X supp F ¬ F supp =
28 26 27 syl φ ¬ F supp =
29 ovexd φ F supp V
30 1 2 3 4 5 6 7 8 cantnfp1lem1 φ F S
31 1 2 3 10 30 cantnfcl φ E We supp F dom O ω
32 31 simpld φ E We supp F
33 10 oien F supp V E We supp F dom O supp F
34 29 32 33 syl2anc φ dom O supp F
35 breq1 dom O = dom O supp F supp F
36 ensymb supp F supp F
37 en0 supp F F supp =
38 36 37 bitri supp F F supp =
39 35 38 bitrdi dom O = dom O supp F F supp =
40 34 39 syl5ibcom φ dom O = F supp =
41 28 40 mtod φ ¬ dom O =
42 31 simprd φ dom O ω
43 nnlim dom O ω ¬ Lim dom O
44 42 43 syl φ ¬ Lim dom O
45 ioran ¬ dom O = Lim dom O ¬ dom O = ¬ Lim dom O
46 41 44 45 sylanbrc φ ¬ dom O = Lim dom O
47 nnord dom O ω Ord dom O
48 unizlim Ord dom O dom O = dom O dom O = Lim dom O
49 42 47 48 3syl φ dom O = dom O dom O = Lim dom O
50 46 49 mtbird φ ¬ dom O = dom O
51 orduniorsuc Ord dom O dom O = dom O dom O = suc dom O
52 42 47 51 3syl φ dom O = dom O dom O = suc dom O
53 52 ord φ ¬ dom O = dom O dom O = suc dom O
54 50 53 mpd φ dom O = suc dom O