Metamath Proof Explorer


Theorem cantnfres

Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfrescl.d φ D On
cantnfrescl.b φ B D
cantnfrescl.x φ n D B X =
cantnfrescl.a φ A
cantnfrescl.t T = dom A CNF D
cantnfres.m φ n B X S
Assertion cantnfres φ A CNF B n B X = A CNF D n D X

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfrescl.d φ D On
5 cantnfrescl.b φ B D
6 cantnfrescl.x φ n D B X =
7 cantnfrescl.a φ A
8 cantnfrescl.t T = dom A CNF D
9 cantnfres.m φ n B X S
10 4 5 6 extmptsuppeq φ n B X supp = n D X supp
11 oieq2 n B X supp = n D X supp OrdIso E n B X supp = OrdIso E n D X supp
12 10 11 syl φ OrdIso E n B X supp = OrdIso E n D X supp
13 12 fveq1d φ OrdIso E n B X supp k = OrdIso E n D X supp k
14 13 3ad2ant1 φ k dom OrdIso E n B X supp z On OrdIso E n B X supp k = OrdIso E n D X supp k
15 14 oveq2d φ k dom OrdIso E n B X supp z On A 𝑜 OrdIso E n B X supp k = A 𝑜 OrdIso E n D X supp k
16 suppssdm n B X supp dom n B X
17 eqid n B X = n B X
18 17 dmmptss dom n B X B
19 18 a1i φ dom n B X B
20 16 19 sstrid φ n B X supp B
21 20 3ad2ant1 φ k dom OrdIso E n B X supp z On n B X supp B
22 eqid OrdIso E n B X supp = OrdIso E n B X supp
23 22 oif OrdIso E n B X supp : dom OrdIso E n B X supp n B X supp
24 23 ffvelrni k dom OrdIso E n B X supp OrdIso E n B X supp k supp n B X
25 24 3ad2ant2 φ k dom OrdIso E n B X supp z On OrdIso E n B X supp k supp n B X
26 21 25 sseldd φ k dom OrdIso E n B X supp z On OrdIso E n B X supp k B
27 26 fvresd φ k dom OrdIso E n B X supp z On n D X B OrdIso E n B X supp k = n D X OrdIso E n B X supp k
28 5 3ad2ant1 φ k dom OrdIso E n B X supp z On B D
29 28 resmptd φ k dom OrdIso E n B X supp z On n D X B = n B X
30 29 fveq1d φ k dom OrdIso E n B X supp z On n D X B OrdIso E n B X supp k = n B X OrdIso E n B X supp k
31 14 fveq2d φ k dom OrdIso E n B X supp z On n D X OrdIso E n B X supp k = n D X OrdIso E n D X supp k
32 27 30 31 3eqtr3d φ k dom OrdIso E n B X supp z On n B X OrdIso E n B X supp k = n D X OrdIso E n D X supp k
33 15 32 oveq12d φ k dom OrdIso E n B X supp z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k = A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k
34 33 oveq1d φ k dom OrdIso E n B X supp z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
35 34 mpoeq3dva φ k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
36 12 dmeqd φ dom OrdIso E n B X supp = dom OrdIso E n D X supp
37 eqid On = On
38 mpoeq12 dom OrdIso E n B X supp = dom OrdIso E n D X supp On = On k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z = k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
39 36 37 38 sylancl φ k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z = k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
40 35 39 eqtrd φ k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
41 eqid =
42 seqomeq12 k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z = seq ω k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = seq ω k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
43 40 41 42 sylancl φ seq ω k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = seq ω k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
44 43 36 fveq12d φ seq ω k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z dom OrdIso E n B X supp = seq ω k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z dom OrdIso E n D X supp
45 eqid seq ω k V , z V A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z
46 1 2 3 22 9 45 cantnfval2 φ A CNF B n B X = seq ω k dom OrdIso E n B X supp , z On A 𝑜 OrdIso E n B X supp k 𝑜 n B X OrdIso E n B X supp k + 𝑜 z dom OrdIso E n B X supp
47 eqid OrdIso E n D X supp = OrdIso E n D X supp
48 1 2 3 4 5 6 7 8 cantnfrescl φ n B X S n D X T
49 9 48 mpbid φ n D X T
50 eqid seq ω k V , z V A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z = seq ω k V , z V A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z
51 8 2 4 47 49 50 cantnfval2 φ A CNF D n D X = seq ω k dom OrdIso E n D X supp , z On A 𝑜 OrdIso E n D X supp k 𝑜 n D X OrdIso E n D X supp k + 𝑜 z dom OrdIso E n D X supp
52 44 46 51 3eqtr4d φ A CNF B n B X = A CNF D n D X