Metamath Proof Explorer


Theorem cantnfrescl

Description: A function is finitely supported from B to A iff the extended function is finitely supported from D to A . (Contributed by Mario Carneiro, 25-May-2015)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfrescl.d φ D On
cantnfrescl.b φ B D
cantnfrescl.x φ n D B X =
cantnfrescl.a φ A
cantnfrescl.t T = dom A CNF D
Assertion cantnfrescl φ n B X S n D X T

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfrescl.d φ D On
5 cantnfrescl.b φ B D
6 cantnfrescl.x φ n D B X =
7 cantnfrescl.a φ A
8 cantnfrescl.t T = dom A CNF D
9 7 adantr φ n D B A
10 6 9 eqeltrd φ n D B X A
11 10 ralrimiva φ n D B X A
12 5 11 raldifeq φ n B X A n D X A
13 eqid n B X = n B X
14 13 fmpt n B X A n B X : B A
15 eqid n D X = n D X
16 15 fmpt n D X A n D X : D A
17 12 14 16 3bitr3g φ n B X : B A n D X : D A
18 3 mptexd φ n B X V
19 funmpt Fun n B X
20 19 a1i φ Fun n B X
21 4 mptexd φ n D X V
22 funmpt Fun n D X
23 21 22 jctir φ n D X V Fun n D X
24 18 20 23 jca31 φ n B X V Fun n B X n D X V Fun n D X
25 4 5 6 extmptsuppeq φ n B X supp = n D X supp
26 suppeqfsuppbi n B X V Fun n B X n D X V Fun n D X n B X supp = n D X supp finSupp n B X finSupp n D X
27 24 25 26 sylc φ finSupp n B X finSupp n D X
28 17 27 anbi12d φ n B X : B A finSupp n B X n D X : D A finSupp n D X
29 1 2 3 cantnfs φ n B X S n B X : B A finSupp n B X
30 8 2 4 cantnfs φ n D X T n D X : D A finSupp n D X
31 28 29 30 3bitr4d φ n B X S n D X T