Metamath Proof Explorer


Theorem cantnfs

Description: Elementhood in the set of finitely supported functions from B to A . (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
Assertion cantnfs φ F S F : B A finSupp F

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 eqid g A B | finSupp g = g A B | finSupp g
5 4 2 3 cantnfdm φ dom A CNF B = g A B | finSupp g
6 1 5 eqtrid φ S = g A B | finSupp g
7 6 eleq2d φ F S F g A B | finSupp g
8 breq1 g = F finSupp g finSupp F
9 8 elrab F g A B | finSupp g F A B finSupp F
10 7 9 bitrdi φ F S F A B finSupp F
11 2 3 elmapd φ F A B F : B A
12 11 anbi1d φ F A B finSupp F F : B A finSupp F
13 10 12 bitrd φ F S F : B A finSupp F