Metamath Proof Explorer


Theorem cantnfsuc

Description: The value of the recursive function H at a successor. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S = dom A CNF B
cantnfs.a φ A On
cantnfs.b φ B On
cantnfcl.g G = OrdIso E F supp
cantnfcl.f φ F S
cantnfval.h H = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
Assertion cantnfsuc φ K ω H suc K = A 𝑜 G K 𝑜 F G K + 𝑜 H K

Proof

Step Hyp Ref Expression
1 cantnfs.s S = dom A CNF B
2 cantnfs.a φ A On
3 cantnfs.b φ B On
4 cantnfcl.g G = OrdIso E F supp
5 cantnfcl.f φ F S
6 cantnfval.h H = seq ω k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z
7 6 seqomsuc K ω H suc K = K k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z H K
8 7 adantl φ K ω H suc K = K k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z H K
9 elex K ω K V
10 9 adantl φ K ω K V
11 fvex H K V
12 simpl u = K v = H K u = K
13 12 fveq2d u = K v = H K G u = G K
14 13 oveq2d u = K v = H K A 𝑜 G u = A 𝑜 G K
15 13 fveq2d u = K v = H K F G u = F G K
16 14 15 oveq12d u = K v = H K A 𝑜 G u 𝑜 F G u = A 𝑜 G K 𝑜 F G K
17 simpr u = K v = H K v = H K
18 16 17 oveq12d u = K v = H K A 𝑜 G u 𝑜 F G u + 𝑜 v = A 𝑜 G K 𝑜 F G K + 𝑜 H K
19 fveq2 k = u G k = G u
20 19 oveq2d k = u A 𝑜 G k = A 𝑜 G u
21 19 fveq2d k = u F G k = F G u
22 20 21 oveq12d k = u A 𝑜 G k 𝑜 F G k = A 𝑜 G u 𝑜 F G u
23 22 oveq1d k = u A 𝑜 G k 𝑜 F G k + 𝑜 z = A 𝑜 G u 𝑜 F G u + 𝑜 z
24 oveq2 z = v A 𝑜 G u 𝑜 F G u + 𝑜 z = A 𝑜 G u 𝑜 F G u + 𝑜 v
25 23 24 cbvmpov k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z = u V , v V A 𝑜 G u 𝑜 F G u + 𝑜 v
26 ovex A 𝑜 G K 𝑜 F G K + 𝑜 H K V
27 18 25 26 ovmpoa K V H K V K k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z H K = A 𝑜 G K 𝑜 F G K + 𝑜 H K
28 10 11 27 sylancl φ K ω K k V , z V A 𝑜 G k 𝑜 F G k + 𝑜 z H K = A 𝑜 G K 𝑜 F G K + 𝑜 H K
29 8 28 eqtrd φ K ω H suc K = A 𝑜 G K 𝑜 F G K + 𝑜 H K