Step |
Hyp |
Ref |
Expression |
1 |
|
cantnfs.s |
|
2 |
|
cantnfs.a |
|
3 |
|
cantnfs.b |
|
4 |
|
cantnfcl.g |
|
5 |
|
cantnfcl.f |
|
6 |
|
cantnfval.h |
|
7 |
1 2 3 4 5 6
|
cantnfval |
|
8 |
|
ssid |
|
9 |
1 2 3 4 5
|
cantnfcl |
|
10 |
9
|
simprd |
|
11 |
|
sseq1 |
|
12 |
|
fveq2 |
|
13 |
|
0ex |
|
14 |
6
|
seqom0g |
|
15 |
13 14
|
ax-mp |
|
16 |
12 15
|
eqtrdi |
|
17 |
|
fveq2 |
|
18 |
|
eqid |
|
19 |
18
|
seqom0g |
|
20 |
13 19
|
ax-mp |
|
21 |
17 20
|
eqtrdi |
|
22 |
16 21
|
eqeq12d |
|
23 |
11 22
|
imbi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
sseq1 |
|
26 |
|
fveq2 |
|
27 |
|
fveq2 |
|
28 |
26 27
|
eqeq12d |
|
29 |
25 28
|
imbi12d |
|
30 |
29
|
imbi2d |
|
31 |
|
sseq1 |
|
32 |
|
fveq2 |
|
33 |
|
fveq2 |
|
34 |
32 33
|
eqeq12d |
|
35 |
31 34
|
imbi12d |
|
36 |
35
|
imbi2d |
|
37 |
|
sseq1 |
|
38 |
|
fveq2 |
|
39 |
|
fveq2 |
|
40 |
38 39
|
eqeq12d |
|
41 |
37 40
|
imbi12d |
|
42 |
41
|
imbi2d |
|
43 |
|
eqid |
|
44 |
43
|
2a1i |
|
45 |
|
sssucid |
|
46 |
|
sstr |
|
47 |
45 46
|
mpan |
|
48 |
47
|
imim1i |
|
49 |
|
oveq2 |
|
50 |
6
|
seqomsuc |
|
51 |
50
|
ad2antrl |
|
52 |
18
|
seqomsuc |
|
53 |
52
|
ad2antrl |
|
54 |
|
ssv |
|
55 |
|
ssv |
|
56 |
|
resmpo |
|
57 |
54 55 56
|
mp2an |
|
58 |
57
|
oveqi |
|
59 |
|
simprr |
|
60 |
|
vex |
|
61 |
60
|
sucid |
|
62 |
61
|
a1i |
|
63 |
59 62
|
sseldd |
|
64 |
18
|
cantnfvalf |
|
65 |
64
|
ffvelrni |
|
66 |
65
|
ad2antrl |
|
67 |
|
ovres |
|
68 |
63 66 67
|
syl2anc |
|
69 |
58 68
|
eqtr3id |
|
70 |
53 69
|
eqtrd |
|
71 |
51 70
|
eqeq12d |
|
72 |
49 71
|
syl5ibr |
|
73 |
72
|
expr |
|
74 |
73
|
a2d |
|
75 |
48 74
|
syl5 |
|
76 |
75
|
expcom |
|
77 |
76
|
a2d |
|
78 |
24 30 36 42 44 77
|
finds |
|
79 |
10 78
|
mpcom |
|
80 |
8 79
|
mpi |
|
81 |
7 80
|
eqtrd |
|