Metamath Proof Explorer


Theorem caofdi

Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofdi.1 φ A V
caofdi.2 φ F : A K
caofdi.3 φ G : A S
caofdi.4 φ H : A S
caofdi.5 φ x K y S z S x T y R z = x T y O x T z
Assertion caofdi φ F T f G R f H = F T f G O f F T f H

Proof

Step Hyp Ref Expression
1 caofdi.1 φ A V
2 caofdi.2 φ F : A K
3 caofdi.3 φ G : A S
4 caofdi.4 φ H : A S
5 caofdi.5 φ x K y S z S x T y R z = x T y O x T z
6 5 adantlr φ w A x K y S z S x T y R z = x T y O x T z
7 2 ffvelrnda φ w A F w K
8 3 ffvelrnda φ w A G w S
9 4 ffvelrnda φ w A H w S
10 6 7 8 9 caovdid φ w A F w T G w R H w = F w T G w O F w T H w
11 10 mpteq2dva φ w A F w T G w R H w = w A F w T G w O F w T H w
12 ovexd φ w A G w R H w V
13 2 feqmptd φ F = w A F w
14 3 feqmptd φ G = w A G w
15 4 feqmptd φ H = w A H w
16 1 8 9 14 15 offval2 φ G R f H = w A G w R H w
17 1 7 12 13 16 offval2 φ F T f G R f H = w A F w T G w R H w
18 ovexd φ w A F w T G w V
19 ovexd φ w A F w T H w V
20 1 7 8 13 14 offval2 φ F T f G = w A F w T G w
21 1 7 9 13 15 offval2 φ F T f H = w A F w T H w
22 1 18 19 20 21 offval2 φ F T f G O f F T f H = w A F w T G w O F w T H w
23 11 17 22 3eqtr4d φ F T f G R f H = F T f G O f F T f H