Metamath Proof Explorer


Theorem caofinvl

Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofinv.3 φ B W
caofinv.4 φ N : S S
caofinv.5 φ G = v A N F v
caofinvl.6 φ x S N x R x = B
Assertion caofinvl φ G R f F = A × B

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofinv.3 φ B W
4 caofinv.4 φ N : S S
5 caofinv.5 φ G = v A N F v
6 caofinvl.6 φ x S N x R x = B
7 4 adantr φ v A N : S S
8 2 ffvelrnda φ v A F v S
9 7 8 ffvelrnd φ v A N F v S
10 5 9 fmpt3d φ G : A S
11 10 ffvelrnda φ w A G w S
12 2 ffvelrnda φ w A F w S
13 fvex N F v V
14 eqid v A N F v = v A N F v
15 13 14 fnmpti v A N F v Fn A
16 5 fneq1d φ G Fn A v A N F v Fn A
17 15 16 mpbiri φ G Fn A
18 dffn5 G Fn A G = w A G w
19 17 18 sylib φ G = w A G w
20 2 feqmptd φ F = w A F w
21 1 11 12 19 20 offval2 φ G R f F = w A G w R F w
22 5 fveq1d φ G w = v A N F v w
23 2fveq3 v = w N F v = N F w
24 fvex N F w V
25 23 14 24 fvmpt w A v A N F v w = N F w
26 22 25 sylan9eq φ w A G w = N F w
27 26 oveq1d φ w A G w R F w = N F w R F w
28 fveq2 x = F w N x = N F w
29 id x = F w x = F w
30 28 29 oveq12d x = F w N x R x = N F w R F w
31 30 eqeq1d x = F w N x R x = B N F w R F w = B
32 6 ralrimiva φ x S N x R x = B
33 32 adantr φ w A x S N x R x = B
34 31 33 12 rspcdva φ w A N F w R F w = B
35 27 34 eqtrd φ w A G w R F w = B
36 35 mpteq2dva φ w A G w R F w = w A B
37 21 36 eqtrd φ G R f F = w A B
38 fconstmpt A × B = w A B
39 37 38 eqtr4di φ G R f F = A × B