Metamath Proof Explorer


Theorem caofref

Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofref.3 φ x S x R x
Assertion caofref φ F R f F

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofref.3 φ x S x R x
4 id x = F w x = F w
5 4 4 breq12d x = F w x R x F w R F w
6 3 ralrimiva φ x S x R x
7 6 adantr φ w A x S x R x
8 2 ffvelrnda φ w A F w S
9 5 7 8 rspcdva φ w A F w R F w
10 9 ralrimiva φ w A F w R F w
11 2 ffnd φ F Fn A
12 inidm A A = A
13 eqidd φ w A F w = F w
14 11 11 1 1 12 13 13 ofrfval φ F R f F w A F w R F w
15 10 14 mpbird φ F R f F