Metamath Proof Explorer


Theorem caonncan

Description: Transfer nncan -shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses caonncan.i φ I V
caonncan.a φ A : I S
caonncan.b φ B : I S
caonncan.z φ x S y S x M x M y = y
Assertion caonncan φ A M f A M f B = B

Proof

Step Hyp Ref Expression
1 caonncan.i φ I V
2 caonncan.a φ A : I S
3 caonncan.b φ B : I S
4 caonncan.z φ x S y S x M x M y = y
5 2 ffvelrnda φ z I A z S
6 3 ffvelrnda φ z I B z S
7 4 ralrimivva φ x S y S x M x M y = y
8 7 adantr φ z I x S y S x M x M y = y
9 id x = A z x = A z
10 oveq1 x = A z x M y = A z M y
11 9 10 oveq12d x = A z x M x M y = A z M A z M y
12 11 eqeq1d x = A z x M x M y = y A z M A z M y = y
13 oveq2 y = B z A z M y = A z M B z
14 13 oveq2d y = B z A z M A z M y = A z M A z M B z
15 id y = B z y = B z
16 14 15 eqeq12d y = B z A z M A z M y = y A z M A z M B z = B z
17 12 16 rspc2va A z S B z S x S y S x M x M y = y A z M A z M B z = B z
18 5 6 8 17 syl21anc φ z I A z M A z M B z = B z
19 18 mpteq2dva φ z I A z M A z M B z = z I B z
20 fvexd φ z I A z V
21 ovexd φ z I A z M B z V
22 2 feqmptd φ A = z I A z
23 fvexd φ z I B z V
24 3 feqmptd φ B = z I B z
25 1 20 23 22 24 offval2 φ A M f B = z I A z M B z
26 1 20 21 22 25 offval2 φ A M f A M f B = z I A z M A z M B z
27 19 26 24 3eqtr4d φ A M f A M f B = B