Metamath Proof Explorer


Theorem caov12

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 A V
caov.2 B V
caov.3 C V
caov.com x F y = y F x
caov.ass x F y F z = x F y F z
Assertion caov12 A F B F C = B F A F C

Proof

Step Hyp Ref Expression
1 caov.1 A V
2 caov.2 B V
3 caov.3 C V
4 caov.com x F y = y F x
5 caov.ass x F y F z = x F y F z
6 1 2 4 caovcom A F B = B F A
7 6 oveq1i A F B F C = B F A F C
8 1 2 3 5 caovass A F B F C = A F B F C
9 2 1 3 5 caovass B F A F C = B F A F C
10 7 8 9 3eqtr3i A F B F C = B F A F C