Metamath Proof Explorer


Theorem caov13

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 A V
caov.2 B V
caov.3 C V
caov.com x F y = y F x
caov.ass x F y F z = x F y F z
Assertion caov13 A F B F C = C F B F A

Proof

Step Hyp Ref Expression
1 caov.1 A V
2 caov.2 B V
3 caov.3 C V
4 caov.com x F y = y F x
5 caov.ass x F y F z = x F y F z
6 1 2 3 4 5 caov31 A F B F C = C F B F A
7 1 2 3 5 caovass A F B F C = A F B F C
8 3 2 1 5 caovass C F B F A = C F B F A
9 6 7 8 3eqtr3i A F B F C = C F B F A