Metamath Proof Explorer


Theorem caov13d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φ A S
caovd.2 φ B S
caovd.3 φ C S
caovd.com φ x S y S x F y = y F x
caovd.ass φ x S y S z S x F y F z = x F y F z
Assertion caov13d φ A F B F C = C F B F A

Proof

Step Hyp Ref Expression
1 caovd.1 φ A S
2 caovd.2 φ B S
3 caovd.3 φ C S
4 caovd.com φ x S y S x F y = y F x
5 caovd.ass φ x S y S z S x F y F z = x F y F z
6 1 2 3 4 5 caov31d φ A F B F C = C F B F A
7 5 1 2 3 caovassd φ A F B F C = A F B F C
8 5 3 2 1 caovassd φ C F B F A = C F B F A
9 6 7 8 3eqtr3d φ A F B F C = C F B F A