Metamath Proof Explorer


Theorem caov31

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 A V
caov.2 B V
caov.3 C V
caov.com x F y = y F x
caov.ass x F y F z = x F y F z
Assertion caov31 A F B F C = C F B F A

Proof

Step Hyp Ref Expression
1 caov.1 A V
2 caov.2 B V
3 caov.3 C V
4 caov.com x F y = y F x
5 caov.ass x F y F z = x F y F z
6 1 3 2 5 caovass A F C F B = A F C F B
7 1 3 2 4 5 caov12 A F C F B = C F A F B
8 6 7 eqtri A F C F B = C F A F B
9 1 2 3 4 5 caov32 A F B F C = A F C F B
10 3 1 2 4 5 caov32 C F A F B = C F B F A
11 3 1 2 5 caovass C F A F B = C F A F B
12 10 11 eqtr3i C F B F A = C F A F B
13 8 9 12 3eqtr4i A F B F C = C F B F A