Metamath Proof Explorer


Theorem caov4

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 A V
caov.2 B V
caov.3 C V
caov.com x F y = y F x
caov.ass x F y F z = x F y F z
caov.4 D V
Assertion caov4 A F B F C F D = A F C F B F D

Proof

Step Hyp Ref Expression
1 caov.1 A V
2 caov.2 B V
3 caov.3 C V
4 caov.com x F y = y F x
5 caov.ass x F y F z = x F y F z
6 caov.4 D V
7 2 3 6 4 5 caov12 B F C F D = C F B F D
8 7 oveq2i A F B F C F D = A F C F B F D
9 ovex C F D V
10 1 2 9 5 caovass A F B F C F D = A F B F C F D
11 ovex B F D V
12 1 3 11 5 caovass A F C F B F D = A F C F B F D
13 8 10 12 3eqtr4i A F B F C F D = A F C F B F D