Metamath Proof Explorer


Theorem caov411

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995)

Ref Expression
Hypotheses caov.1 A V
caov.2 B V
caov.3 C V
caov.com x F y = y F x
caov.ass x F y F z = x F y F z
caov.4 D V
Assertion caov411 A F B F C F D = C F B F A F D

Proof

Step Hyp Ref Expression
1 caov.1 A V
2 caov.2 B V
3 caov.3 C V
4 caov.com x F y = y F x
5 caov.ass x F y F z = x F y F z
6 caov.4 D V
7 1 2 3 4 5 caov31 A F B F C = C F B F A
8 7 oveq1i A F B F C F D = C F B F A F D
9 ovex A F B V
10 9 3 6 5 caovass A F B F C F D = A F B F C F D
11 ovex C F B V
12 11 1 6 5 caovass C F B F A F D = C F B F A F D
13 8 10 12 3eqtr3i A F B F C F D = C F B F A F D