Metamath Proof Explorer


Theorem caov411d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φ A S
caovd.2 φ B S
caovd.3 φ C S
caovd.com φ x S y S x F y = y F x
caovd.ass φ x S y S z S x F y F z = x F y F z
caovd.4 φ D S
caovd.cl φ x S y S x F y S
Assertion caov411d φ A F B F C F D = C F B F A F D

Proof

Step Hyp Ref Expression
1 caovd.1 φ A S
2 caovd.2 φ B S
3 caovd.3 φ C S
4 caovd.com φ x S y S x F y = y F x
5 caovd.ass φ x S y S z S x F y F z = x F y F z
6 caovd.4 φ D S
7 caovd.cl φ x S y S x F y S
8 2 1 3 4 5 6 7 caov4d φ B F A F C F D = B F C F A F D
9 4 2 1 caovcomd φ B F A = A F B
10 9 oveq1d φ B F A F C F D = A F B F C F D
11 4 2 3 caovcomd φ B F C = C F B
12 11 oveq1d φ B F C F A F D = C F B F A F D
13 8 10 12 3eqtr3d φ A F B F C F D = C F B F A F D