Metamath Proof Explorer


Theorem caov42d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φ A S
caovd.2 φ B S
caovd.3 φ C S
caovd.com φ x S y S x F y = y F x
caovd.ass φ x S y S z S x F y F z = x F y F z
caovd.4 φ D S
caovd.cl φ x S y S x F y S
Assertion caov42d φ A F B F C F D = A F C F D F B

Proof

Step Hyp Ref Expression
1 caovd.1 φ A S
2 caovd.2 φ B S
3 caovd.3 φ C S
4 caovd.com φ x S y S x F y = y F x
5 caovd.ass φ x S y S z S x F y F z = x F y F z
6 caovd.4 φ D S
7 caovd.cl φ x S y S x F y S
8 1 2 3 4 5 6 7 caov4d φ A F B F C F D = A F C F B F D
9 4 2 6 caovcomd φ B F D = D F B
10 9 oveq2d φ A F C F B F D = A F C F D F B
11 8 10 eqtrd φ A F B F C F D = A F C F D F B