Metamath Proof Explorer


Theorem caov4d

Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovd.1 φ A S
caovd.2 φ B S
caovd.3 φ C S
caovd.com φ x S y S x F y = y F x
caovd.ass φ x S y S z S x F y F z = x F y F z
caovd.4 φ D S
caovd.cl φ x S y S x F y S
Assertion caov4d φ A F B F C F D = A F C F B F D

Proof

Step Hyp Ref Expression
1 caovd.1 φ A S
2 caovd.2 φ B S
3 caovd.3 φ C S
4 caovd.com φ x S y S x F y = y F x
5 caovd.ass φ x S y S z S x F y F z = x F y F z
6 caovd.4 φ D S
7 caovd.cl φ x S y S x F y S
8 2 3 6 4 5 caov12d φ B F C F D = C F B F D
9 8 oveq2d φ A F B F C F D = A F C F B F D
10 7 3 6 caovcld φ C F D S
11 5 1 2 10 caovassd φ A F B F C F D = A F B F C F D
12 7 2 6 caovcld φ B F D S
13 5 1 3 12 caovassd φ A F C F B F D = A F C F B F D
14 9 11 13 3eqtr4d φ A F B F C F D = A F C F B F D