Metamath Proof Explorer


Theorem caovass

Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypotheses caovass.1 A V
caovass.2 B V
caovass.3 C V
caovass.4 x F y F z = x F y F z
Assertion caovass A F B F C = A F B F C

Proof

Step Hyp Ref Expression
1 caovass.1 A V
2 caovass.2 B V
3 caovass.3 C V
4 caovass.4 x F y F z = x F y F z
5 tru
6 4 a1i x V y V z V x F y F z = x F y F z
7 6 caovassg A V B V C V A F B F C = A F B F C
8 5 7 mpan A V B V C V A F B F C = A F B F C
9 1 2 3 8 mp3an A F B F C = A F B F C