Metamath Proof Explorer


Theorem caovassd

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovassg.1 φ x S y S z S x F y F z = x F y F z
caovassd.2 φ A S
caovassd.3 φ B S
caovassd.4 φ C S
Assertion caovassd φ A F B F C = A F B F C

Proof

Step Hyp Ref Expression
1 caovassg.1 φ x S y S z S x F y F z = x F y F z
2 caovassd.2 φ A S
3 caovassd.3 φ B S
4 caovassd.4 φ C S
5 id φ φ
6 1 caovassg φ A S B S C S A F B F C = A F B F C
7 5 2 3 4 6 syl13anc φ A F B F C = A F B F C