Metamath Proof Explorer


Theorem caovassg

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovassg.1 φ x S y S z S x F y F z = x F y F z
Assertion caovassg φ A S B S C S A F B F C = A F B F C

Proof

Step Hyp Ref Expression
1 caovassg.1 φ x S y S z S x F y F z = x F y F z
2 1 ralrimivvva φ x S y S z S x F y F z = x F y F z
3 oveq1 x = A x F y = A F y
4 3 oveq1d x = A x F y F z = A F y F z
5 oveq1 x = A x F y F z = A F y F z
6 4 5 eqeq12d x = A x F y F z = x F y F z A F y F z = A F y F z
7 oveq2 y = B A F y = A F B
8 7 oveq1d y = B A F y F z = A F B F z
9 oveq1 y = B y F z = B F z
10 9 oveq2d y = B A F y F z = A F B F z
11 8 10 eqeq12d y = B A F y F z = A F y F z A F B F z = A F B F z
12 oveq2 z = C A F B F z = A F B F C
13 oveq2 z = C B F z = B F C
14 13 oveq2d z = C A F B F z = A F B F C
15 12 14 eqeq12d z = C A F B F z = A F B F z A F B F C = A F B F C
16 6 11 15 rspc3v A S B S C S x S y S z S x F y F z = x F y F z A F B F C = A F B F C
17 2 16 mpan9 φ A S B S C S A F B F C = A F B F C