Metamath Proof Explorer


Theorem caovcan

Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995)

Ref Expression
Hypotheses caovcan.1 C V
caovcan.2 x S y S x F y = x F z y = z
Assertion caovcan A S B S A F B = A F C B = C

Proof

Step Hyp Ref Expression
1 caovcan.1 C V
2 caovcan.2 x S y S x F y = x F z y = z
3 oveq1 x = A x F y = A F y
4 oveq1 x = A x F C = A F C
5 3 4 eqeq12d x = A x F y = x F C A F y = A F C
6 5 imbi1d x = A x F y = x F C y = C A F y = A F C y = C
7 oveq2 y = B A F y = A F B
8 7 eqeq1d y = B A F y = A F C A F B = A F C
9 eqeq1 y = B y = C B = C
10 8 9 imbi12d y = B A F y = A F C y = C A F B = A F C B = C
11 oveq2 z = C x F z = x F C
12 11 eqeq2d z = C x F y = x F z x F y = x F C
13 eqeq2 z = C y = z y = C
14 12 13 imbi12d z = C x F y = x F z y = z x F y = x F C y = C
15 14 imbi2d z = C x S y S x F y = x F z y = z x S y S x F y = x F C y = C
16 1 15 2 vtocl x S y S x F y = x F C y = C
17 6 10 16 vtocl2ga A S B S A F B = A F C B = C