Metamath Proof Explorer


Theorem caovcand

Description: Convert an operation cancellation law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1 φ x T y S z S x F y = x F z y = z
caovcand.2 φ A T
caovcand.3 φ B S
caovcand.4 φ C S
Assertion caovcand φ A F B = A F C B = C

Proof

Step Hyp Ref Expression
1 caovcang.1 φ x T y S z S x F y = x F z y = z
2 caovcand.2 φ A T
3 caovcand.3 φ B S
4 caovcand.4 φ C S
5 id φ φ
6 1 caovcang φ A T B S C S A F B = A F C B = C
7 5 2 3 4 6 syl13anc φ A F B = A F C B = C