Metamath Proof Explorer


Theorem caovcang

Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995) (Revised by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypothesis caovcang.1 φ x T y S z S x F y = x F z y = z
Assertion caovcang φ A T B S C S A F B = A F C B = C

Proof

Step Hyp Ref Expression
1 caovcang.1 φ x T y S z S x F y = x F z y = z
2 1 ralrimivvva φ x T y S z S x F y = x F z y = z
3 oveq1 x = A x F y = A F y
4 oveq1 x = A x F z = A F z
5 3 4 eqeq12d x = A x F y = x F z A F y = A F z
6 5 bibi1d x = A x F y = x F z y = z A F y = A F z y = z
7 oveq2 y = B A F y = A F B
8 7 eqeq1d y = B A F y = A F z A F B = A F z
9 eqeq1 y = B y = z B = z
10 8 9 bibi12d y = B A F y = A F z y = z A F B = A F z B = z
11 oveq2 z = C A F z = A F C
12 11 eqeq2d z = C A F B = A F z A F B = A F C
13 eqeq2 z = C B = z B = C
14 12 13 bibi12d z = C A F B = A F z B = z A F B = A F C B = C
15 6 10 14 rspc3v A T B S C S x T y S z S x F y = x F z y = z A F B = A F C B = C
16 2 15 mpan9 φ A T B S C S A F B = A F C B = C