Metamath Proof Explorer


Theorem caovcanrd

Description: Commute the arguments of an operation cancellation law. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcang.1 φ x T y S z S x F y = x F z y = z
caovcand.2 φ A T
caovcand.3 φ B S
caovcand.4 φ C S
caovcanrd.5 φ A S
caovcanrd.6 φ x S y S x F y = y F x
Assertion caovcanrd φ B F A = C F A B = C

Proof

Step Hyp Ref Expression
1 caovcang.1 φ x T y S z S x F y = x F z y = z
2 caovcand.2 φ A T
3 caovcand.3 φ B S
4 caovcand.4 φ C S
5 caovcanrd.5 φ A S
6 caovcanrd.6 φ x S y S x F y = y F x
7 6 5 3 caovcomd φ A F B = B F A
8 6 5 4 caovcomd φ A F C = C F A
9 7 8 eqeq12d φ A F B = A F C B F A = C F A
10 1 2 3 4 caovcand φ A F B = A F C B = C
11 9 10 bitr3d φ B F A = C F A B = C