Metamath Proof Explorer


Theorem caovcl

Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovcl.1 x S y S x F y S
Assertion caovcl A S B S A F B S

Proof

Step Hyp Ref Expression
1 caovcl.1 x S y S x F y S
2 tru
3 1 adantl x S y S x F y S
4 3 caovclg A S B S A F B S
5 2 4 mpan A S B S A F B S