Metamath Proof Explorer


Theorem caovclg

Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014)

Ref Expression
Hypothesis caovclg.1 φ x C y D x F y E
Assertion caovclg φ A C B D A F B E

Proof

Step Hyp Ref Expression
1 caovclg.1 φ x C y D x F y E
2 1 ralrimivva φ x C y D x F y E
3 oveq1 x = A x F y = A F y
4 3 eleq1d x = A x F y E A F y E
5 oveq2 y = B A F y = A F B
6 5 eleq1d y = B A F y E A F B E
7 4 6 rspc2v A C B D x C y D x F y E A F B E
8 2 7 mpan9 φ A C B D A F B E