Metamath Proof Explorer
Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 1-Jun-2013)
|
|
Ref |
Expression |
|
Hypotheses |
caovcom.1 |
|
|
|
caovcom.2 |
|
|
|
caovcom.3 |
|
|
Assertion |
caovcom |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovcom.1 |
|
| 2 |
|
caovcom.2 |
|
| 3 |
|
caovcom.3 |
|
| 4 |
1 2
|
pm3.2i |
|
| 5 |
3
|
a1i |
|
| 6 |
5
|
caovcomg |
|
| 7 |
1 4 6
|
mp2an |
|