Metamath Proof Explorer


Theorem caovcom

Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 1-Jun-2013)

Ref Expression
Hypotheses caovcom.1 A V
caovcom.2 B V
caovcom.3 x F y = y F x
Assertion caovcom A F B = B F A

Proof

Step Hyp Ref Expression
1 caovcom.1 A V
2 caovcom.2 B V
3 caovcom.3 x F y = y F x
4 1 2 pm3.2i A V B V
5 3 a1i A V x V y V x F y = y F x
6 5 caovcomg A V A V B V A F B = B F A
7 1 4 6 mp2an A F B = B F A