Metamath Proof Explorer


Theorem caovcomd

Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovcomg.1 φ x S y S x F y = y F x
caovcomd.2 φ A S
caovcomd.3 φ B S
Assertion caovcomd φ A F B = B F A

Proof

Step Hyp Ref Expression
1 caovcomg.1 φ x S y S x F y = y F x
2 caovcomd.2 φ A S
3 caovcomd.3 φ B S
4 id φ φ
5 1 caovcomg φ A S B S A F B = B F A
6 4 2 3 5 syl12anc φ A F B = B F A