Metamath Proof Explorer


Theorem caovcomg

Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013)

Ref Expression
Hypothesis caovcomg.1 φ x S y S x F y = y F x
Assertion caovcomg φ A S B S A F B = B F A

Proof

Step Hyp Ref Expression
1 caovcomg.1 φ x S y S x F y = y F x
2 1 ralrimivva φ x S y S x F y = y F x
3 oveq1 x = A x F y = A F y
4 oveq2 x = A y F x = y F A
5 3 4 eqeq12d x = A x F y = y F x A F y = y F A
6 oveq2 y = B A F y = A F B
7 oveq1 y = B y F A = B F A
8 6 7 eqeq12d y = B A F y = y F A A F B = B F A
9 5 8 rspc2v A S B S x S y S x F y = y F x A F B = B F A
10 2 9 mpan9 φ A S B S A F B = B F A